【題目】閱讀理解:如果兩個正數(shù)a,b,即a0,b0,有下面的不等式:,當(dāng)且僅當(dāng)ab時取到等號我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具.

初步探究:(1)已知x0,求函數(shù)yx+的最小值.

問題遷移:(2)學(xué)校準(zhǔn)備以圍墻一面為斜邊,用柵欄圍成一個面積為100m2的直角三角形,作為英語角,直角三角形的兩直角邊各為多少時,所用柵欄最短?

創(chuàng)新應(yīng)用:(3)如圖,在直角坐標(biāo)系中,直線AB經(jīng)點P3,4),與坐標(biāo)軸正半軸相交于A,B兩點,當(dāng)△AOB的面積最小時,求△AOB的內(nèi)切圓的半徑.

【答案】初步探究:(14;問題遷移:(2x10m時,y有最小值,即所用柵欄最短;創(chuàng)新應(yīng)用:(3R2

【解析】

1)根據(jù)x0,令a=xb=,利用題中的新定義求出函數(shù)的最小值即可;
2)設(shè)一直角邊為xm,則另一直角邊為m,柵欄總長為ym,根據(jù)題意表示出yx的函數(shù)關(guān)系式,利用題中的新定義求出y取得最小值時x的值即可;
3)設(shè)直線AB解析式為y=kx+b,把P坐標(biāo)代入用k表示出b,進而表示出AB坐標(biāo),確定出OAOB的長,得出三角形AOB面積,利用題中的新定義求出三角形AOB面積最小時k的值,確定出直角三角形三邊,即可求出三角形AOB內(nèi)切圓半徑.

解:(1)令ax,bx0),

a+b≥2,得yx+≥24

當(dāng)且僅當(dāng)x時,即x2時,函數(shù)有最小值,最小值為4

2)設(shè)一直角邊為xm,則另一直角邊為m,柵欄總長為ym,

yx+,

當(dāng)且僅當(dāng)x時,即x10m時,y有最小值,即所用柵欄最短;

3)設(shè)直線AB的解析式是ykx+b,

P34)代入得:43k+b,

整理得:b43k

∴直線AB的解析式是ykx+43k,

當(dāng)x0時,y43k;當(dāng)y0時,x,

A043k),B,0),

SAOBOBOA43k12﹣(),

∵要使AOB的面積最小,

必須最大,

k0,

∴﹣k0,

=2×612,當(dāng)且僅當(dāng)時,取等號,

解得:k±,

k0,

k=﹣,

OA43k8OB6,

根據(jù)勾股定理得:AB10,

設(shè)三角形AOB的內(nèi)切圓的半徑是R

由三角形面積公式得:×6×8×6R+×8R+×10R,

解得:R2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級舉行英語演講比賽,準(zhǔn)備用1200元錢(全部用完)購買A,B兩種筆記本作為獎品,已知A,B兩種每本分別為12元和20元,設(shè)購入Ax本,By本.

1)求y關(guān)于x的函數(shù)表達式.

2)若購進A種的數(shù)量不少于B種的數(shù)量.

①求至少購進A種多少本?

②根據(jù)①的購買,發(fā)現(xiàn)B種太多,在費用不變的情況下把一部分B種調(diào)換成另一種C,調(diào)換后C種的數(shù)量多于B種的數(shù)量,已知C種每本8元,則調(diào)換后C種至少有______本(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線,經(jīng)過點A(-1,-2),B(0,1).

1)求拋物線的關(guān)系式及頂點P的坐標(biāo).

2)若點B′與點B關(guān)于x軸對稱,把(1)中的拋物線向左平移m個單位,平移后的拋物線經(jīng)過點B′,設(shè)此時拋物線頂點為點P′.

①求∠P′B B′的大小.

②把線段P′B′以點B′為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)120°,點P′落在點M處,設(shè)點N在(1)中的拋物線上,當(dāng)△MN B′的面積等于6時,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠A=90°

1)請用圓規(guī)和直尺作出⊙P,使圓心PAC邊上,且與ABBC兩邊都相切(保留作圖痕跡,不寫作法和證明);

2)在(1)的條件下,若∠B=45°,AB=1,PBC于點D,求劣弧的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別在邊BCDC上,連接AE、BF,AEBF,點M、N分別在邊AB、DC上,連接MN,若MNBC,FN1BE2,則BM_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與直線交于點,則______

【答案】-1

【解析】

將點A的坐標(biāo)代入兩直線解析式得出關(guān)于mb的方程組,解之可得.

解:由題意知,

解得,

故答案為:

【點睛】

本題主要考查兩直線相交或平行問題,解題的關(guān)鍵是掌握兩直線的交點坐標(biāo)必定同時滿足兩個直線解析式.

型】填空
結(jié)束】
11

【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CEAD于點F,則△AFC的面積等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個交點,則m=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCDO的內(nèi)接四邊形,AC為直徑,DEBC,垂足為E

1)判斷直線EDO的位置關(guān)系,并說明理由;

2)若CE=1,AC=4,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案