(2006•黃石)已知二次函數(shù)y=ax2+bx有最大值,且圖象頂點(diǎn)在y軸的右側(cè),則函數(shù)y=ax+b與y=ax2+bx的圖象大致是( )
A.
B.
C.
D.
【答案】分析:已知二次函數(shù)有最大值,圖象開(kāi)口向下,a<0,結(jié)合對(duì)稱(chēng)軸的位置判斷b的符號(hào),再根據(jù)a、b的符號(hào)判斷函數(shù)y=ax+b的圖象位置.
解答:解:由二次函數(shù)y=ax2+bx有最大值,可得a<0;
圖象頂點(diǎn)在y軸的右側(cè),則x=->0,即b>0,
所以,函數(shù)y=ax+b的圖象應(yīng)在一、二、四象限.
故選B.
點(diǎn)評(píng):應(yīng)該識(shí)記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì):開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•黃石)已知二次函數(shù)圖象經(jīng)過(guò)兩點(diǎn)A(1,0)、B(5,0),且函數(shù)有最小值-1.直線y=m(x-3)與二次函數(shù)圖象交于C、D兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)證明:以CD為直徑的圓與直線y=-2相切;
(3)設(shè)以CD為直徑的圓與直線y=-2的切點(diǎn)為E,過(guò)點(diǎn)C、D分別作直線y=-2的垂線,垂足為F、G、S1、S2、S分別表示△CEF、△DEG、△CDE的面積.證明:S=S1+S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•黃石)已知二次函數(shù)圖象經(jīng)過(guò)兩點(diǎn)A(1,0)、B(5,0),且函數(shù)有最小值-1.直線y=m(x-3)與二次函數(shù)圖象交于C、D兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)證明:以CD為直徑的圓與直線y=-2相切;
(3)設(shè)以CD為直徑的圓與直線y=-2的切點(diǎn)為E,過(guò)點(diǎn)C、D分別作直線y=-2的垂線,垂足為F、G、S1、S2、S分別表示△CEF、△DEG、△CDE的面積.證明:S=S1+S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2006•黃石)已知二次函數(shù)y=ax2+bx有最大值,且圖象頂點(diǎn)在y軸的右側(cè),則函數(shù)y=ax+b與y=ax2+bx的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2006•黃石)已知二次函數(shù)y=ax2+bx有最大值,且圖象頂點(diǎn)在y軸的右側(cè),則函數(shù)y=ax+b與y=ax2+bx的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(02)(解析版) 題型:選擇題

(2006•黃石)已知關(guān)于x的方程x2-x+1-2m=0的兩根分別為x1,x2,且x12+x22=3,則關(guān)于x的不等式3-(2m-1)x≤0的解為( )
A.x≤
B.x<
C.x≥3
D.x≤3

查看答案和解析>>

同步練習(xí)冊(cè)答案