【題目】如圖在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸負(fù)半軸上一個動點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。喝绺淖儯堈f明理由;
(3)連接OQ,當(dāng)OQ∥AB時,求P點(diǎn)的坐標(biāo).
【答案】(1)點(diǎn)B的坐標(biāo)為B(3,);(2)∠ABQ=90°,始終不變,理由見解析;(3)P的坐標(biāo)為(﹣3,0).
【解析】
(1)如圖,作輔助線;證明∠BOC=30°,OB=2 ,借助直角三角形的邊角關(guān)系即可解決問題;
(2)證明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解決問題;
(3)根據(jù)點(diǎn)P在x的負(fù)半軸上,再根據(jù)全等三角形的性質(zhì)即可得出結(jié)果
(1)如圖1,過點(diǎn)B作BC⊥x軸于點(diǎn)C,
∵△AOB為等邊三角形,且OA=2,
∴∠AOB=60°,OB=OA=2,
∴∠BOC=30°,而∠OCB=90°,
∴BC=OB=,OC==3,
∴點(diǎn)B的坐標(biāo)為B(3,);
(2)∠ABQ=90°,始終不變.理由如下:
∵△APQ、△AOB均為等邊三角形,
∴AP=AQ、AO=AB、∠PAQ=∠OAB,
∴∠PAO=∠QAB,
在△APO與△AQB中,,
∴△APO≌△AQB(SAS),
∴∠ABQ=∠AOP=90°;
(3)如圖2,∵點(diǎn)P在x軸負(fù)半軸上,點(diǎn)Q在點(diǎn)B的下方,
∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.
又OB=OA=2,可求得BQ=3,
由(2)可知,△APO≌△AQB,
∴OP=BQ=3,
∴此時P的坐標(biāo)為(﹣3,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫作法,保留作圖痕跡)
(2)連接AP當(dāng)為多少度時,AP平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:
出廠價 | 成本價 | 排污處理費(fèi) | |
甲種塑料 | 2100(元/噸) | 800(元/噸) | 200(元/噸) |
乙種塑料 | 2400(元/噸) | 1100(元/噸) | 100(元/噸) 另每月還需支付設(shè)備管理、維護(hù)費(fèi)20000元 |
(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1和y2與x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);
(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖案由邊長相等的黑白兩色正方形按一定規(guī)律拼接而成,觀察圖案回答問題:
第個圖案中白色正方形的個數(shù)為 .
第個圖案中白色正方形的個數(shù)為 .
第個圖案中白色正方形的個數(shù)有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測得塔頂D處的仰角為 60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)正下方,且A、C兩點(diǎn)在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某糧庫3天內(nèi)的糧食進(jìn)出庫的噸數(shù)為:+26,-32,-15,+34,-38,-20.問:
(1)經(jīng)過這3天,庫里的糧食是增多了多少?還是減少了多少?
(2)經(jīng)過這3天,倉庫管理員發(fā)現(xiàn)庫里還存有520噸糧食,那么3天前庫里存糧多少噸?
(3)如果進(jìn)出的裝卸費(fèi)都是每噸5元,那么這3天需要多少裝卸費(fèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工人計劃加工一批產(chǎn)品,如果每小時加工產(chǎn)品10個,就可以在預(yù)定時間完成任務(wù),如果每小時多加工2個,就可以提前1小時完成任務(wù).
(1)該產(chǎn)品的預(yù)定加工時間為幾小時?
(2)若該產(chǎn)品銷售時的標(biāo)價為100元/個,按標(biāo)價的八折銷售時,每個仍可以盈利25元,該批產(chǎn)品總成本為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com