【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA往A運(yùn)動,當(dāng)運(yùn)動到點A時停止,若設(shè)點D運(yùn)動的時間為t秒,點D運(yùn)動的速度為每秒1個單位長度
(1)當(dāng)t=2時,CD=______,AD=______;(請直接寫出答案)
(2)當(dāng)△CBD是直角三角形時,t=______;(請直接寫出答案)
(3)求當(dāng)t為何值時,△CBD是等腰三角形?并說明理由.
【答案】(1)CD=2,AD=8;(2) t=3.6或10秒;(3)t=5秒或6秒或7.2秒時,△CBD是等腰三角形,理由見解析
【解析】
(1)根據(jù)CD=速度×時間列式計算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進(jìn)行計算即可得解;
(2)分①∠CDB=90°時,利用△ABC的面積列式計算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時間=路程÷速度計算;②∠CBD=90°時,點D和點A重合,然后根據(jù)時間=路程÷速度計算即可得解;
(3)分①CD=BD時,過點D作DE⊥BC于E,根據(jù)等腰三角形三線合一的性質(zhì)可得CE=BE,從而得到CD=AD;②CD=BC時,CD=6;③BD=BC時,過點B作BF⊥AC于F,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.
(1)t=2時,CD=2×1=2,
∵∠ABC=90°,AB=8,BC=6,
∴AC==10,
AD=AC-CD=10-2=8;
(2)①∠CDB=90°時,S△ABC=ACBD=ABBC,
即×10BD=×8×6,
解得BD=4.8,
∴CD==3.6,
t=3.6÷1=3.6秒;
②∠CBD=90°時,點D和點A重合,
t=10÷1=10秒,
綜上所述,t=3.6或10秒;
故答案為:(1)2,8;(2)3.6或10秒;
(3)①CD=BD時,如圖1,過點D作DE⊥BC于E,
則CE=BE,
∴CD=AD=AC=×10=5,
t=5÷1=5;
②CD=BC時,CD=6,t=6÷1=6;
③BD=BC時,如圖2,過點B作BF⊥AC于F,
則CF=3.6,
CD=2CF=3.6×2=7.2,
∴t=7.2÷1=7.2,
綜上所述,t=5秒或6秒或7.2秒時,△CBD是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星光櫥具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售,其進(jìn)價與售價如表:
進(jìn)價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進(jìn)這兩種電器共30臺,用去了5600元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過9000元的資金采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不少于電壓鍋的 ,問櫥具店有哪幾種進(jìn)貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進(jìn)貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)到距離A地350千米的B地辦事,甲先出發(fā),乙后出發(fā),甲、乙兩人距A地的路程和時間的關(guān)系如圖所示,根據(jù)圖示提供的信息解答:
乙比甲晚______小時出發(fā);乙出發(fā)______小時后追上甲;
分別求甲、乙兩人離開A地的路程s關(guān)于t的函數(shù)關(guān)系式;
求乙比甲早幾小時到達(dá)B地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“行動起來,對抗霧霾”為主題的植樹活動,某街道積極響應(yīng),決定對該街道進(jìn)行綠化改造,共購進(jìn)甲、乙兩種樹共500棵,已知甲樹每棵800元,乙樹每棵1200元.
(1)若購買兩種樹總金額為560000元,求甲、乙兩種樹各購買了多少棵?
(2)若購買甲樹的金額不少于購買乙樹的金額,至少應(yīng)購買甲樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,已知,其中滿足.
(1)填空: = _____ , = _____ ;
(2)如果在第三象限內(nèi)一點,請用含的式子表示⊿的面積;
(3)若⑵條件下,當(dāng)時,在坐標(biāo)軸上一點,使得⊿的面積與⊿的面積相等,請求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在全校學(xué)生中開展了“地球﹣我們的家園”為主題的環(huán)保征文比賽,評選出一、二、三等獎和優(yōu)秀獎,根據(jù)獎項的情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)該校獲獎的總?cè)藬?shù)為 , 并把條形統(tǒng)計圖補(bǔ)充完整;
(2)求在扇形統(tǒng)計圖中表示“二等獎”的扇形的圓心角的度數(shù);
(3)獲得一等獎的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎活動,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
(1)折疊紙面,使表示的點1與-1重合,則-2表示的點與 表示的點重合;
(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
① 5表示的點與數(shù) 表示的點重合;
②表示的點與數(shù) 表示的點重合;
③若數(shù)軸上A、B兩點之間距離為9(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,此時點A表示的數(shù)是 、點B表示的數(shù)是 .
(3)已知在數(shù)軸上點A表示的數(shù)是a,點A移動4個單位,此時點A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com