【題目】如圖,在△ABC中,∠C=90°,點(diǎn)D在AB上,BC=BD,DE⊥AB交AC于點(diǎn)E,△ABC的周長為12,△ADE的周長為6,則BC的長為( )
A.3
B.4
C.5
D.6
【答案】A
【解析】解:設(shè)BC=BD=x,AD=y,因?yàn)椤螩=∠ADE=90°∠A=∠A,所以△ADE∽△ACB;兩三角形的周長之比為1:2,所以AD:AC=1:2,則AC=2y; 根據(jù)三角形ABC的周長為12得:x+(x+y)+2y=12;即:2x+3y=12…①
根據(jù)勾股定理得:(2y)2+x2=(x+y)2 , 即:2x=3y…②
聯(lián)合①②得:x=3,y=2;
故應(yīng)選A.
設(shè)BC=BD=x,AD=y,△ABD和△ABC相似,根據(jù)三角形的性質(zhì)相似三角形周長的比等于對應(yīng)邊的比進(jìn)行解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板的直角頂點(diǎn)O重疊在一起.
(1)問題發(fā)現(xiàn):如圖①,當(dāng)OB平分∠COD時(shí),∠AOD+∠BOC的度數(shù)是;
(2)拓展探究:如圖②,當(dāng)OB不平分∠COD時(shí),∠AOD+∠BOC的度數(shù)是多少?
(3)問題解決:當(dāng)∠BOC的余角的4倍等于∠AOD時(shí),求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次三項(xiàng)式x2-4x+3配方的結(jié)果是( 。
A.(x-2)2+7
B.(x-2)2-1
C.(x+2)2+7
D.(x+2)2-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P關(guān)于x軸的對稱點(diǎn)P1的坐標(biāo)是(2,1),那么點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P2的坐標(biāo)是( 。
A. (﹣1,﹣2) B. (2,﹣1) C. (﹣2,﹣1) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能確定△ABC是直角三角形的條件有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷∠BOE和∠COE有怎樣的數(shù)量關(guān)系,說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰補(bǔ)角是( )
A. 和為180°的兩個(gè)角
B. 有公共頂點(diǎn)且有一條公共邊,另一邊互為反向延長線的兩個(gè)角
C. 有一條公共邊且相等的兩個(gè)角
D. 有公共頂點(diǎn)且互補(bǔ)的兩個(gè)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD=,求的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com