【題目】如圖,點D、E、F分在AB、BC、AC上,且DE∥AC,EF∥AB,下面寫出了證明“∠A+∠B+∠C=180°”的過程,請補充完整:
證明:∵DE∥AC,EF∥AB
∴∠1=∠ ,∠3=∠ ,( )
∵AB∥EF(已知)
∴∠2=∠ ( )
∵DE∥AC(已知)
∴∠4=∠ ( )
∴∠2=∠A( )
∵∠1+∠2+∠3=180°(平角定義)
∴∠A+∠B+∠C=180°(等量代換)
【答案】C;B;兩直線平行,同位角相等;4;兩直線平行,內(nèi)錯角相等;A;兩直線平行,同位角相等;等量代換.
【解析】
先由DE∥AC,AB∥EF,根據(jù)平行線的性質(zhì)得出∠1=∠C,∠3=∠B.由AB∥EF,根據(jù)兩直線平行,內(nèi)錯角相等得出∠2=∠4,由DE∥AC,得出∠4=∠A.等量代換得出∠2=∠A,進而得到∠A+∠B+∠C=180°.
解:∵DE∥AC,AB∥EF,
∴∠1=∠C,∠3=∠B.(兩直線平行,同位角相等)
∵AB∥EF,
∴∠2=∠4.(兩直線平行,內(nèi)錯角相等)
∵DE∥AC,
∴∠4=∠A.(兩直線平行,同位角相等)
∴∠2=∠A(等量代換)
∵∠1+∠2+∠3=180°
∴∠A+∠B+∠C=180°(等量代換)
故答案為:C;B;兩直線平行,同位角相等;4;兩直線平行,內(nèi)錯角相等;A;兩直線平行,同位角相等;等量代換.
科目:初中數(shù)學 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】茜茜受《烏鴉喝水》故事的啟發(fā),利用量筒、大球和小球進行了如下操作,請根據(jù)圖中給出的信息,解答下列問題:
(1)放入一個小球水面升高______cm,放入一個大球水面升高______cm.
(2)如果要使水面上升到50cm,應放入大球、小球各多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個三角形的紙片ABC,其中∠A=∠C,
(1)把△ABC紙片按 (如圖1) 所示折疊,使點A落在BC邊上的點F處,DE是折痕.說明 BC∥DF;
(2)把△ABC紙片沿DE折疊,當點A落在四邊形BCED內(nèi)時 (如圖2),探索∠C與∠1+∠2之間的大小關(guān)系,并說明理由;
(3)當點A落在四邊形BCED外時 (如圖3),探索∠C與∠1、∠2之間的大小關(guān)系.(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)一種圓環(huán)甲(如圖1),它的外圓直徑是8厘米,環(huán)寬1厘米。
①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為 厘米;
②如果用n個這樣的圓環(huán)相扣并拉緊,長度為 厘米。
(2)另一種圓環(huán)乙,像(1)中圓環(huán)甲那樣相扣并拉緊,
①3個圓環(huán)乙的長度是28cm,5個圓環(huán)乙的長度是44cm,求出圓環(huán)乙的外圓直徑和環(huán)寬;
②現(xiàn)有n(n>2)個圓環(huán)甲和n(n>2)個圓環(huán)乙,將它們像(1)中那樣相扣并拉緊,長度用n的代數(shù)式表示為多少厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場用2700元購進甲、乙兩種商品共100件,這兩種商品的進價、標價如下表所示:
甲種 | 乙種 | |
進價(元/件) | 15 | 35 |
標價(元/件) | 20 | 45 |
(1)求購進兩種商品各多少件?
(2)商品將兩種商品全部賣出后,獲得的利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分) 小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設計一種可行的裁剪方案;
(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設計一種裁剪方案,若不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分) 如圖1,將△ABC紙片沿中位線EH折疊,使點A的對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形.類似地,對多邊形進行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩 形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段 , ;S矩形AEFG:S□ABCD=
(2)ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長.
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把該紙片折疊,得到疊合正方形.請你幫助畫出疊合正方形的示意圖,并求出AD,BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(閱讀理解)
如圖(1),AD是△ABC的中線,作△ABC的高AH.
∵AD是△ABC的中線
∴BD=CD
∵S△ABD=BDAH,S△ACD=CDAH
∴S△ABD S△ACD(填:<或>或=)
(2)(結(jié)論拓展)
△ABC中,D是BC邊上一點,若,則=
(3)(結(jié)論應用)
如圖(3),請你將△ABC分成4個面積相等的三角形(畫出分割線即可)
如圖(4),BE是△ABC的中線,F是AB邊上一點,連接CF交BE于點O,若,則= .說明你的理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com