分析 (1)由對折有∠DEF=∠AED,∠EDF=∠ADE,再利用三角形的內(nèi)角和、平角的定義即可求解;
(2)由對折有∠DEF=∠AED,∠EDF=∠ADE,再利用三角形內(nèi)角和、平角的定義即可求解.
解答 解:(1)2∠A=∠1+∠2.
理由如下:如圖①,
由折疊有,∠DEF=∠AED,∠EDF=∠ADE,
∵∠DEF+∠AED+∠1=180°,
∴∠1=180°-(∠DEF+∠AED)=180°-2∠AED,
∴∠AED=$\frac{180°-∠1}{2}$
同理:∠ADE=$\frac{180°-∠2}{2}$,
∵∠A+∠ADE+∠AED=180°,
∴∠A+$\frac{180°-∠2}{2}$+$\frac{180°-∠1}{2}$=180°,
∴2∠A=∠1+∠2.
(2)2∠A=∠1-∠2.
如圖②,
由(1)有:∠AED=$\frac{180°-∠1}{2}$,∠EDF=∠ADE,
∵∠EDF+∠EDC=180°,∠EDC=∠ADE-∠2,
∴∠ADE=$\frac{180°+∠2}{2}$
∵∠A+∠AED+∠ADE=180°,
∴∠A+$\frac{180°-∠1}{2}$+$\frac{180°+∠2}{2}$=180°,
∴2∠A=∠1-∠2.
點(diǎn)評 此題是折疊變換.主要考查折疊的性質(zhì),和平角,三角形內(nèi)角和,式子的化簡是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 25° | B. | 20° | C. | 15° | D. | 18° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥4 | B. | m≤4 | C. | 3≤x<4 | D. | 3<x≤4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com