【題目】如圖所示,在邊長為2的等邊三角形ABC中,GBC的中點,DAG的中點,過點DEFBCABE,交ACF,P是線段EF上一個動點,連接BP,GP,則BPG的周長的最小值是________

【答案】3

【解析】

由于點G關于直線EF的對稱點是A,所以當B、P、A三點在同一直線上時,BP+PG的值最小,此時BPG的周長的最小

解:由題意得AGBC,點G與點A關于直線EF對稱,

連接PA,則BP+PG=BP+PA,

所以當點A,B,P在一條直線上時,BP+PA的值最小,最小值為2.

由題可得BG=1,

因為BPG的周長為BG+PG+BP,

所以當BP+PA的值最小時,BPG的周長最小,最小值是3.

故答案為:3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料,解答后面給出的問題:

兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個代數(shù)式互為有理化因式,例如,+1-1.

(1)請你再寫出兩個含有二次根式的代數(shù)式,使它們互為有理化因式:__________________;

這樣,化簡一個分母含有二次根式的式子時,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.

(2)請仿照上面給出的方法化簡:;

(3)計算:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動的時間為tt>0)秒.

(1)點C表示的數(shù)是   ;

(2)求當t等于多少秒時,點P到達點B處;

(3)點P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當t等于多少秒時,PC之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角板ABC的斜邊AB=12 cm,A=30°,將三角板ABC繞點C順時針旋轉90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使點B′落在原三角板ABC的斜邊AB上,則三角板A′B′C′平移的距離為(  )

A. 6 cm B. 4 cm

C. (6-2)cm D. (4-6)cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字“幸”、“!、“聊”、“城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個球,球上的漢字剛好是“!钡母怕蕿槎嗌?
(2)小穎從中任取一球,記下漢字后放回袋中,然后再從中任取一球,求小穎取出的兩個球上漢字恰能組成“幸!被颉傲某恰钡母怕剩

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習代數(shù)式的值時,介紹了計算程序中的框圖:用表示數(shù)據(jù)輸入、輸出框;用表示數(shù)據(jù)處理和運算框;用表示數(shù)據(jù)判斷框(根據(jù)條件決定執(zhí)行兩條路徑中的某一條).按圖所示的程序計算(輸入的為正整數(shù)).

例如:輸入,結果依次為、、,即運算循環(huán)(次計算結果為)結束.

(1)輸入,結果依次為___________________、、、.

(依次填入循環(huán)計算所缺的幾次結果)

(2)輸入,運算循環(huán)__________次結束.

(3)輸入正整數(shù),經(jīng)過次運算結束,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點坐標為(-2,0),則下列說法:①y隨x的增大而減。虎陉P于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c,OA=OC,下列關系中正確的是( )

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.
+1=c

查看答案和解析>>

同步練習冊答案