【題目】如圖,在菱形ABCD中,AB6,∠DAB60°AE分別交BC,BD于點E,F,CE2,連接CF.給出以下結(jié)論:①△ABF≌△CBF;②點EAB的距離是3;③tanDCF;④△ABF的面積為.其中正確的結(jié)論序號是_____

【答案】①②③④

【解析】

利用SAS證明△ABF與△CBF全等,得出①正確,根據(jù)含30°角的直角三角形的性質(zhì)得出點EAB的距離是2,得出②錯誤,同時求出△ABF的面積,得出④錯誤,得出tanDCF,得出③正確.

解:∵四邊形ABCD是菱形,

ABBC6,

∵∠DAB60°

ABADDB,∠ABD=∠DBC60°

在△ABF與△CBF中,

∴△ABF≌△CBFSAS),故①正確;

過點EEGAB,過點FMHCDM,MHABH,如圖所示:

CE2BC6,∠ABC120°

BE624,

EGAB,

EG2,

∴點EAB的距離是2,故②錯誤;

BE4EC2,

SBFESFEC4221

SABFSFBE32,

∴△ABF的面積為=SABE××6×2,故④正確;

SADB×6×39,

SDFCSADBSABF9

SDFC×6×MF,

FM,

DM=,

CMDCDM6,

tanDCF

故③正確;

故答案為:①②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小區(qū)常見的漫步機,當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測得BE長為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時,測得∠CAB42°,點C到地面的距離CF長為0.52m,當(dāng)踏板連桿繞著點A旋轉(zhuǎn)到AG處∠GAB30°時,求點G距離地面的高度GH的長.(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應(yīng)的圓心角是多少;

(4)如果該校九年級共有1200名學(xué)生,請估計選擇以友善為主題的九年級學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F是平行四邊形ABCD對角線BD上的兩點,DE=EF=BF,連接CE并延長交AD于點G,連接CF并延長交AB于點H,連接CH,設(shè)CDG的面積為S1,CHG的面積為S2,則S1S2的關(guān)系正確的是(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙OAB是直徑,點D在⊙O上,ODBC,過點DDEAB,垂足為E,連接CDOE邊于點F

1)求證:DOE∽△ABC;

2)求證:∠ODF=BDE;

3)連接OC.設(shè)DOE的面積為SsinA=,求四邊形BCOD的面積(用含有S的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a是常數(shù),a0),下列結(jié)論正確的是(

A.當(dāng)a=1時,函數(shù)圖象經(jīng)過點(﹣1,1)

B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點

C.若a0,函數(shù)圖象的頂點始終在x軸的下方

D.若a0,則當(dāng)x1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca,bc是常數(shù),a≠0)圖象的對稱軸是直線x1,其圖象的一部分如圖所示,下列說法中①abc0;②2a+b0;③當(dāng)﹣1x3時,y0;④2c3b0.正確的結(jié)論有( 。

A. ①②B. ②③④C. ①③D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣9,﹣6,﹣3,﹣1,23,6,811這九個數(shù)中,任取一個作為a值,能夠使關(guān)于x的一元二次方程x2+ax+90有兩個不相等的實數(shù)根的概率是_____

查看答案和解析>>

同步練習(xí)冊答案