【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,點(diǎn)D在⊙O上,OD∥BC,過點(diǎn)D作DE⊥AB,垂足為E,連接CD交OE邊于點(diǎn)F.
(1)求證:△DOE∽△ABC;
(2)求證:∠ODF=∠BDE;
(3)連接OC.設(shè)△DOE的面積為S.sinA=,求四邊形BCOD的面積(用含有S的式子表示)
【答案】(1)見解析;(2)見解析;(3)S四邊形BCOD=.
【解析】
(1)根據(jù)圓周角定理和垂直(DE⊥AB)得出∠DEO=∠ACB;根據(jù)平行(OD∥BC)得出∠DOE=∠ABC;根據(jù)相似三角形的判定即可證明;
(2)根據(jù)相似三角形的性質(zhì)可得∠ODE=∠A,根據(jù)圓周角定理可得∠A=∠BDC,進(jìn)而推出∠ODE=∠BDC,等式兩邊同時(shí)減去∠EDF即可證明∠ODF=∠BDE.
(3)根據(jù)相似三角形的性質(zhì)可得S△ABC=4S△DOE=4S,進(jìn)而可得S△BOC=2S;由sinA=,∠A=∠ODE及圓的半徑相等(OD=OB),可得,將三部分的面積相加,即可解答本題.
(1)證明:∵AB是⊙O的直徑,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DEO=90°,
∴∠DEO=∠ACB,
∵OD∥BC,
∴∠DOE=∠ABC,
∴△DOE∽△ABC;
(2)證明:∵△DOE∽△ABC,
∴∠ODE=∠A,
∵∠A和∠BDC是所對的圓周角,
∴∠A=∠BDC,
∴∠ODE=∠BDC,
∴∠ODF=∠BDE;
(3)解:∵△DOE∽△ABC,
∴,
即S△ABC=4S△DOE=4S,
∵OA=OB,
∴,
即S△BOC=2S,
∵sinA=,sinA=sin∠ODE,
∴,
∴OE=,
∴,
∴,
∴S四邊形BCOD=S△BOC+S△DOE+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠B=60°,動點(diǎn)P以每秒1個(gè)單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動到點(diǎn)B,同時(shí)動點(diǎn)Q以每秒2個(gè)單位的速度自點(diǎn)B出發(fā)沿折線B﹣C﹣D運(yùn)動到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動時(shí),△BPQ的面積S隨時(shí)間t變化關(guān)系圖象,則a的值是( )
A.2B.2.5C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點(diǎn),連結(jié)AP、BP,求AP+BP的最小值.
(1)嘗試解決:為了解決這個(gè)問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點(diǎn)D,使CD=1,則有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.
請你完成余下的思考,并直接寫出答案:AP+BP的最小值為 .
(2)自主探索:在“問題提出”的條件不變的情況下,AP+BP的最小值為 .
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點(diǎn)P是上一點(diǎn),求2PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(-2,m)繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點(diǎn)P的坐標(biāo)為(3,2),則m的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC,BD于點(diǎn)E,F,CE=2,連接CF.給出以下結(jié)論:①△ABF≌△CBF;②點(diǎn)E到AB的距離是3;③tan∠DCF=;④△ABF的面積為.其中正確的結(jié)論序號是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(3)班班主任劉老師對全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問題:
(1)八年級(3)班學(xué)生總?cè)藬?shù)是 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)劉老師發(fā)現(xiàn)報(bào)名參加“植物識別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動記錄員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D都在⊙O上,AC,BD相交于點(diǎn)E,則∠ABD=( )
A. ∠ACD B. ∠ADB C. ∠AED D. ∠ACB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com