【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)E在BC上,點(diǎn)F在AB的延長(zhǎng)線上,且AE=CF.
(1)求證:△ABE≌△CBF.
(2)若∠ACF=70°,求∠EAC的度數(shù).
【答案】(1)見(jiàn)解析;(2)∠EAC=20°
【解析】
(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL證得Rt△ABE≌Rt△CBF;
(2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠FBC的度數(shù),又由Rt△ABE≌Rt△CBF,即可求得∠EAB的度數(shù),再得出∠EAC即可求得答案.
證明:∵∠ABC=90°
∴△ABE與△CBF為直角三角形.
∵在Rt△ABE與Rt△BCF中,
,
∴Rt△ABE≌Rt△CBF;
(2)∵AB=BC,∠ABC=90°,
∴∠BAC=∠ACB=45°,
∵∠ACF=70°,
∴∠FBC=25°,
由Rt△ABE≌Rt△CBF,∴∠EAB=∠FBC=25°,
∴∠EAC=20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在坐標(biāo)平面內(nèi),點(diǎn)的坐標(biāo)是,點(diǎn)在點(diǎn)的正北方向個(gè)單位處,把點(diǎn)向上平移個(gè)單位再向左平移個(gè)單位得到點(diǎn).
在下圖中畫(huà)出平面直角坐標(biāo)系和,寫(xiě)出點(diǎn)、點(diǎn)的坐標(biāo);
在圖中作出關(guān)于軸的軸對(duì)稱(chēng)圖形;
求出的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,觀察每個(gè)正多邊形中的變化情況,解答下列問(wèn)題:
(1)將下面的表格補(bǔ)充完整:
正多邊形的邊數(shù) | 3 | 4 | 5 | 6 | … | 15 |
的度數(shù) | … |
(2)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中?若存在,直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由;
(3)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中?若存在,直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c的圖象如圖所示.
(1)求二次函數(shù)的表達(dá)式;
(2)函數(shù)圖象上有兩點(diǎn)P(x1,y),Q(x2,y),且滿足x1<x2,結(jié)合函數(shù)圖象回答問(wèn)題;
①當(dāng)y=3時(shí),直接寫(xiě)出x2﹣x1的值;
②當(dāng)2≤x2﹣x1≤3,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,甲、乙兩車(chē)離開(kāi)A城的距離y(千米)與甲車(chē)行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①A,B兩城相距300千米;②乙車(chē)比甲車(chē)晚出發(fā)1小時(shí),卻早到1.5小時(shí);③乙車(chē)出發(fā)后2.5小時(shí)追上甲車(chē);④當(dāng)甲、乙兩車(chē)相距40千米時(shí),t=或t=,其中正確的結(jié)論有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)的點(diǎn)A(m﹣3,2m﹣2)在第二象限,且m為整數(shù),B(3,1).
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),求:①點(diǎn)P的坐標(biāo);②PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一點(diǎn)O為圓心的⊙O與BC相切于點(diǎn)C,與AC相交于點(diǎn)D.
(1)如圖1,若⊙O與AB相切于點(diǎn)E,求⊙O的半徑;
(2)如圖2,若⊙O在AB邊上截得的弦FG= , 求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)對(duì)角線BD上一點(diǎn)P作EF∥BC,GH∥AB,則圖中面積相等的平行四邊形共有_____對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E是位于AB兩側(cè)的半圓AB上的動(dòng)點(diǎn),射線DC切⊙O于點(diǎn)D.連接DE,AE,DE與AB交于點(diǎn)P,F是射線DC上一動(dòng)點(diǎn),連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當(dāng)∠DAE=_________時(shí),四邊形ADFP是菱形;
②若BF⊥DF,當(dāng)∠DAE=_________時(shí),四邊形BFDP是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com