如圖,平面內有公共端點的六條射線OA、OB、OC、OD、OE、OF,從射線OA開始按逆時針依次在射線上寫出數(shù)字1、2、3、4、5、6、7…,則數(shù)字“2012”在( 。
分析:根據圖形,從射線OA開始,按照逆時針方向,每6個數(shù)字為一個循環(huán)組,依次循環(huán),用2012除以6,根據余數(shù)的情況進行判斷即可.
解答:解:觀察圖形可得,按照逆時針方向,每6個數(shù)字為一個循環(huán)組,
2012÷6=335…2,
所以,數(shù)字2012是第336組的第2個數(shù)字,在射線OB上.
故選B.
點評:本題是對圖形變化規(guī)律與數(shù)字變化規(guī)律的考查,根據圖形特點,判斷出“每6個數(shù)字為一個循環(huán)組,依次循環(huán)”是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,平面內有公共端點的六條射線:OA,OB,OC,OD,OE,OF,從射線OA開始按逆時針方向依次在射線上寫出數(shù)字:1,2,3,4,5,6,7,….根據規(guī)律將射線OD上的第n個數(shù)字(從O向D數(shù))用含正整數(shù)n的式子表示為
6n-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,平面內有公共端點的六條射線OA,OB,OC,OD,OE,OF,從射線OA開始按逆時針方向依次在射線上寫出數(shù)字1,2,3,4,5,6,7,….
(1)“20”在射線
 
上.
(2)請任意寫出三條射線上數(shù)字的排列規(guī)律.
(3)“2010”在哪條射線上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面內有公共端點的五條射線OA,OB,OC,OD,OE,以O為圓心畫圓,在第1個圓與射線OA,OB,OC,OD,OE的交點上依次標出數(shù)字l,2,3,4,5,在第2個圓與射線OA,OB,OC,OD,OE的交點上依次標出數(shù)字6,7,8,9,10以此類推…
(1)“13”在射線
OC
OC
與第
3
3
個圓的交點上.
(2)用含n的式子表示:射線OA上的數(shù)字的排列規(guī)徘是
5n-4
5n-4
;射線OE上的數(shù)字的排列規(guī)律是
5n
5n
;第n個圓與射線OB、OD的空點上的數(shù)字分別是
5n-3
5n-3
5n-1
5n-1

(3)猜想“2010”在射線
OE
OE
與第
402
402
個圓的交點上,并試著說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面內有公共端點的八條射線OA、OB、OC、OD、OE、OF、OG、OH,從射線OA開始按逆時針方向依次在射線上寫上數(shù)字1、2、3、4、5、6、7、8、9,….按此規(guī)律,數(shù)2012在射線
OD
OD
上.

查看答案和解析>>

同步練習冊答案