【題目】(問題情境)在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點P為直線BC上一動點(不與點B、C重合),連接AP,將線段PA繞點P順時針旋轉得到線段PQ旋轉角為α,連接CQ.
(特例分析)(1)當α=90°,點P在線段BC上時,過P作PF∥AC交直線AB于點F,如圖①,易得圖中與△APF全等的一個三角形是 ,∠ACQ= °.
(拓展探究)(2)當點P在BC延長線上,AB:AC=m:n時,如圖②,試求線段BP與CQ的比值;
(問題解決)(3)當點P在直線BC上,α=60°,∠APB=30°,CP=4時,請直接寫出線段CQ的長.
【答案】(1)△PQC,90;(2);(3)線段CQ的長為2或8.
【解析】
(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉的旋轉證明AP=PQ,∠PAF=∠QPC,從而可得結論,
(2)過P作PF∥AC,交BA的延長線于F,則,再證明△AFP≌△PCQ,利用△ABC∽△FBP的性質可得答案,
(3)分情況討論:當P在CB的延長線上時,證明△APC≌△QPC,利用等邊三角形的性質可得答案,當P在BC的延長線上時,連接AQ,利用等邊三角形的性質,證明△ACQ≌△PCQ,從而可得答案.
解:(1)如圖①,∵∠ABC=90°,AB=CB,
∴△ABC是等腰直角三角形,
∵PF∥AC,
∴∠BPF=∠BFP=45°,
∴△BPF是等腰直角三角形,
∴BF=BP,
∴AF=CP,
由旋轉可得,AP=PQ,∠APQ=90°,而∠BPF=45°,
∴∠QPC=45°﹣∠APF,
又∵∠PAF=∠PFB﹣∠APF=45°﹣∠APF,
∴∠PAF=∠QPC,
∴△APF≌△PQC,
∴∠PCQ=∠AFP=135°,
又∵∠ACB=45°,
∴∠ACQ=90°,
故答案為:△PQC,90;
(2)如圖②,過P作PF∥AC,交BA的延長線于F,則,
又∵AB=BC,
∴AF=CP,
又∵∠FAP=∠ABC+∠APB=α+∠APB,∠CPQ=∠APQ+∠APB=α+∠APB,
∴∠FAP=∠CPQ,
由旋轉可得,PA=PQ,
∴△AFP≌△PCQ,
∴FP=CQ,
∵PF∥AC,
∴△ABC∽△FBP,
∴,
∴
(3)如圖,當P在CB的延長線上時,
∠CPQ=∠APQ﹣∠APB=60°﹣30°=30°,
∴∠APC=∠QPC,
又∵AP=QP,PC=PC,
∴△APC≌△QPC,
∴CQ=AC,
又∵BA=BC,∠ABC=60°,
∴△ABC是等邊三角形,
∴∠ABC=60°,∠BAP=∠ABC﹣∠APB=30°,
∴BP=AB=BC=PC=2,
∴QC=AC=BC=2;
如圖,當P在BC的延長線上時,連接AQ,
由旋轉可得,AP=QP,∠APQ=∠ABC=60°,
∴△APQ是等邊三角形,
∴AQ=PQ,∠APQ=60°=∠AQP,
又∵∠APB=30°,∠ACB=60°,
∴∠CAP=30°,∠CPQ=90°,
∴∠CAP=∠APA,
∴AC=PC,
∴△ACQ≌△PCQ,
∴∠AQC=∠PQC=∠AQP=30°,
∴Rt△PCQ中,CQ=2CP=8.
綜上所述,線段CQ的長為2或8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+px+q的對稱軸為直線x=﹣2,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,﹣1).若要在y軸上找一點P,使得PM+PN最小,則點P的坐標為( ).
A. (0,﹣2) B. (0,﹣) C. (0,﹣) D. (0,﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,二次函數(shù)圖象的頂點坐標為C(1,﹣2),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(3,0),B點在y軸上.點P為線段AB上的一個動點(點P與點A、B不重合),過點P且垂直于x軸的直線與這個二次函數(shù)的圖象交于點E.
(1)求這個二次函數(shù)的解析式;
(2)設點P的橫坐標為x,求線段PE的長(用含x 的代數(shù)式表示);
(3)點D為直線AB與這個二次函數(shù)圖象對稱軸的交點,若以點P、E、D為頂點的三角形與△AOB相似,請求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動中,老師準備三張完全相同的紙片,紙片上分別寫有如圖所示圖形的一個條件:①AD=BC;②AB∥DC;③AO=OC,小明同學從三張紙片中任意抽取兩張.請你用樹狀圖或表格表示出抽取兩張紙片上的條件所有可能出現(xiàn)的結果(用序號表示),并求出上述條件下四邊形ABCD是平行四邊形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級學生每周平均課外閱讀時間(單位: ), 隨機抽查了該學校九年級部分同學,對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下的統(tǒng)計圖①和②,請根據相關信息,解答下列問題;
該校抽查九年級學生的人數(shù)為_______,圖①中的 a值為______;
求統(tǒng)計的這組每周平均課外閱讀時間的樣本數(shù)據的平均數(shù)、眾數(shù)和中位數(shù);
若該校九年級共有名學生,根據統(tǒng)計的這組每周平均課外閱讀時間的樣本數(shù)據,估計該校九年級每周平均課外閱讀時間為的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分已知關于x的一元二次方程(m-2)x2+(2m+1)x+m=0有兩個實數(shù)根x1,x2.
(1)求m的取值范圍.
(2)若|x1|=|x2|,求m的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九二班計劃購買A、B兩種相冊共42冊作為畢業(yè)禮品,已知A種相冊的單價比B種的多10元,買4冊A種相冊與買5冊B種相冊的費用相同.
(1)求A、B兩種相冊的單價分別是多少元?
(2)由于學生對兩類相冊喜好不同,經調查得知:購買的A種相冊的數(shù)量要少于B種相冊數(shù)量的,但又不少于B種相冊數(shù)量的,如果設買A種相冊x冊.
①有多少種不同的購買方案?
②商店為了促銷,決定對A種相冊每冊讓利a元銷售(12≤a≤18),B種相冊每冊讓利b元銷售,最后班委會同學在付款時發(fā)現(xiàn):購買所需的總費用與購買的方案無關,當總費用最少時,求此時a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com