兩個自然數(shù)的和與差的乘積是1996,則這兩數(shù)的和是
998
998
分析:設(shè)兩個自然數(shù)為a、b,根據(jù)題意列出等式,注意到(a+b)、(a-b)的奇偶性相同,1996只能分為兩個偶數(shù)的積,根據(jù)(a+b)、(a-b)的大小,確定a+b的值.
解答:解:設(shè)兩個自然數(shù)為a、b,依題意得
(a+b)(a-b)=1996,且(a+b)、(a-b)的奇偶性相同,
故1996=998×2,
又(a+b)>(a-b),
∴a+b=998.
故本題答案為998.
點評:本題考查了平方差公式的運用,關(guān)鍵是判斷(a+b)、(a-b)的奇偶性,確定a+b的值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

12、已知兩個自然數(shù)的積與和之差恰等于它們的最大公約數(shù)與最小公倍數(shù)之和,求這樣的自然數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探索題:
(1)設(shè)n表示任意一個整數(shù),則用含有n的代數(shù)式表示任意一個偶數(shù)為
2n
2n
,用含有n的代數(shù)式表示任意一個奇數(shù)為
2n+1或2n-1
2n+1或2n-1
;
(2)用舉例驗證的方法探索:任意兩個整數(shù)的和與這兩個數(shù)的差是否同時為奇數(shù)或同時為偶數(shù)?你的結(jié)論是
(填“是”或“否”);
(3)設(shè)a、b是任意的兩個整數(shù),試用“用字母表示數(shù)”的方法并分情況來說明a+b和a-b是否“同奇”或“同偶”?并進一步得出一般性的結(jié)論.
例:①設(shè)a=2m,b=2n.
則a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此時a+b和a-b同時為偶數(shù).
請你仿照以上的方法并考慮其余所有可能的情況加以計算和說明;
(4)以(3)的結(jié)論為基礎(chǔ)進一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)應(yīng)用第(2)、(3)、(4)的結(jié)論完成:在2014個自然數(shù)1,2,3,…,2013,2014的每一個數(shù)的前面任意添加“+”或“-”,則其代數(shù)和一定是
奇數(shù)
奇數(shù)
(填“奇數(shù)”或“偶數(shù)”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

兩個自然數(shù)的和與差的乘積是1996,則這兩數(shù)的和是________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知兩個自然數(shù)的積與和之差恰等于它們的最大公約數(shù)與最小公倍數(shù)之和,求這樣的自然數(shù).

查看答案和解析>>

同步練習冊答案