如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點(diǎn)O,A1,將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,C2與x 軸交于另一點(diǎn)A2.請(qǐng)繼續(xù)操作并探究:將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,與x 軸交于另一點(diǎn)A3;將C3繞點(diǎn)A2旋轉(zhuǎn)180°得C4,與x 軸交于另一點(diǎn)A4,這樣依次得到x軸上的點(diǎn)A1,A2,A3,…,An,…,及拋物線C1,C2,…,Cn,….則點(diǎn)A4的坐標(biāo)為         ;Cn的頂點(diǎn)坐標(biāo)為               (n為正整數(shù),用含n的代數(shù)式表示) .
(n為正整數(shù)).

試題分析:令y=0,則,解得x1=0,x2=3,
∴A1(3,0).
∴根據(jù)旋轉(zhuǎn)的性質(zhì)可得點(diǎn)A4的坐標(biāo)為.
,∴C1的頂點(diǎn)坐標(biāo)為.
∴根據(jù)旋轉(zhuǎn)的性質(zhì)可得C2的頂點(diǎn)坐標(biāo)為;C3的頂點(diǎn)坐標(biāo)為;C4的頂點(diǎn)坐標(biāo)為;………Cn的頂點(diǎn)坐標(biāo)為(n為正整數(shù)).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從點(diǎn)O正上方2米的點(diǎn)A處發(fā)出把球看成點(diǎn),其運(yùn)行的高度y(米)與運(yùn)行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點(diǎn)O的水平距離為9米,高度為2.43米,球場(chǎng)的邊界距點(diǎn)O的水平距離為18米.
(1)當(dāng)h=2.6時(shí),求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
(3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的方程:①和②,其中.
(1)求證:方程①總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將、兩點(diǎn)按照相同的方式平移后,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,若點(diǎn)的橫坐標(biāo)恰好是方程②的一個(gè)根,求的值;
(3)設(shè)二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側(cè)的部分與直線)交于兩點(diǎn),當(dāng)向上平移直線時(shí),交點(diǎn)位置隨之變化,若交點(diǎn)間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC向右運(yùn)動(dòng),到達(dá)D點(diǎn)停止;另一動(dòng)點(diǎn)P從距離B點(diǎn)1個(gè)單位的位置出發(fā),以相同的速度沿BC向右運(yùn)動(dòng),到達(dá)DC中點(diǎn)停止;已知P、Q同時(shí)出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側(cè),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)點(diǎn)N落在AB邊上時(shí),t的值為   ,當(dāng)點(diǎn)N落在AC邊上時(shí),t的值為   ;
(2)設(shè)正方形PQMN與△ABC重疊部分面積為S,求出當(dāng)重疊部分為五邊形時(shí)S與t的函數(shù)關(guān)系式以及t的取值范圍;
(3)(本小題選做題,做對(duì)得5分,但全卷不超過150分)
如圖2,分別取AB、AC的中點(diǎn)E、F,連接ED、FD,當(dāng)點(diǎn)P、Q開始運(yùn)動(dòng)時(shí),點(diǎn)G從BE中點(diǎn)出發(fā),以每秒 個(gè)單位的速度沿折線BE-ED-DF向F點(diǎn)運(yùn)動(dòng),到達(dá)F點(diǎn)停止運(yùn)動(dòng).請(qǐng)問在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)G可能與PN邊的中點(diǎn)重合嗎?如果可能,請(qǐng)直接寫出t的值或取值范圍;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l的解析式為,拋物線y = ax2+bx+2經(jīng)過點(diǎn)A(m,0),B(2,0),D 三點(diǎn).
(1)求拋物線的解析式及A點(diǎn)的坐標(biāo),并在圖示坐標(biāo)系中畫出拋物線的大致圖象;
(2)已知點(diǎn) P(x,y)為拋物線在第二象限部分上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE垂直x軸于點(diǎn)E, 延長PE與直線l交于點(diǎn)F,請(qǐng)你將四邊形PAFB的面積S表示為點(diǎn)P的橫坐標(biāo)x的函數(shù), 并求出S的最大值及S最大時(shí)點(diǎn)P的坐標(biāo);
(3)將(2)中S最大時(shí)的點(diǎn)P與點(diǎn)B相連,求證:直線l上的任意一點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)一定在PB所在直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線交坐標(biāo)軸于A、B、D三點(diǎn),過點(diǎn)D作軸的平行線交拋物線于點(diǎn)C.直線l過點(diǎn)E(0,-),且平分梯形ABCD面積.
⑴ 直接寫出A、B、D三點(diǎn)的坐標(biāo);
⑵ 直接寫出直線l的解析式;
⑶ 若點(diǎn)P在直線l上,且在x軸上方,tan∠OPB=,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則它與x軸的另一個(gè)交點(diǎn)坐標(biāo)是
A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=(2x-1)2+2的頂點(diǎn)的坐標(biāo)是 
A.(1,2)B.(1,-2)C.(,2)D.(-,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將二次函數(shù)化為的形式,下列結(jié)果正確的是[(   )]
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案