拋物線y=-x2+1,y=-(x+1)2與拋物線y=-(x2+1)的    相同,    不同.
【答案】分析:三個拋物線解析式都是頂點式,根據(jù)二次項系數(shù)判斷開口方向;根據(jù)頂點式的坐標(biāo)特點求頂點坐標(biāo)及對稱軸,判斷是否相同.
解答:解:∵這三個函數(shù)的a值相同為-,
故開口方向相同;
他們的頂點坐標(biāo)分別為(0,1),(-1,0),(0,-);
故對稱軸,頂點坐標(biāo)不同.
依次填:開口方向;對稱軸,頂點坐標(biāo).
點評:主要考查了二次函數(shù)的性質(zhì),以及對稱軸和頂點坐標(biāo)的判斷.求拋物線的頂點坐標(biāo)、對稱軸及最值的方法.通常有兩種方法:
(1)公式法:y=ax2+bx+c的頂點坐標(biāo)為(,),對稱軸是x=;
(2)配方法:將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標(biāo)是(h,k),對稱軸是x=h.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標(biāo),且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數(shù)式表示);
(2)設(shè)拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標(biāo)為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標(biāo);
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、在平面直角坐標(biāo)系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是( 。

查看答案和解析>>

同步練習(xí)冊答案