【題目】在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)
(1)判斷點M是否在直線y=﹣x+4上,并說明理由;
(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;
(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是 .
【答案】(1)點M(3,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為3或5;(3)2<n<3.
【解析】
(1)將x=3代入y=-x+4,求出y=-3+4=1≠2,即可判斷點M(3,2)不在直線y=-x+4上;
(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(3,2)關于x軸的對稱點為點M1(3,-2);②點M(3,2)關于y軸的對稱點為點M2(-3,2).分別求出b的值,得到平移的距離;
(3)由直線y=kx+b經過點M(3,2),得到b=2-3k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.
(1)點M不在直線y=﹣x+4上,理由如下:
∵當x=3時,y=﹣3+4=1≠2,
∴點M(3,2)不在直線y=﹣x+4上;
(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.
①點M(3,2)關于x軸的對稱點為點M1(3,﹣2),
∵點M1(3,﹣2)在直線y=﹣x+4+b上,
∴﹣2=﹣3+4+b,
∴b=﹣3,
即平移的距離為3;
②點M(3,2)關于y軸的對稱點為點M2(﹣3,2),
∵點M2(﹣3,2)在直線y=﹣x+4+b上,
∴2=3+4+b,
∴b=﹣5,
即平移的距離為5.
綜上所述,平移的距離為3或5;
(3)∵直線y=kx+b經過點M(3,2),
∴2=3k+b,b=2﹣3k.
∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,
∴y=kn+b=﹣n+4,
∴kn+2﹣3k=﹣n+4,
∴k=.
∵y=kx+b隨x的增大而增大,
∴k>0,即>0,
∴①,或②,
不等式組①無解,不等式組②的解集為2<n<3.
∴n的取值范圍是2<n<3.
故答案為2<n<3.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設m是不小于﹣1的實數(shù),關于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.
(1)若∠BAE=40°,求∠C的度數(shù);
(2)若△ABC周長為14cm,AC=6cm,求DC長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已等腰Rt△ABC中,∠BAC=90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
(1)如圖,求證:△ACE≌△ABD;
(2)點D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;
(3)若AC=,當CD=1時,請直接寫出DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠車間共有10名工人,調查每個工人的日均生產能力,獲得數(shù)據(jù)制成如下統(tǒng)計圖.
(1)求這10名工人的日均生產件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)若要使占60%的工人都能完成任務,應選什么統(tǒng)計量(平均數(shù)、中位數(shù)、眾數(shù))做日生產件數(shù)的定額?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DCB中,∠BAC=∠CDB=90°,AB=DC,AC與BD交于點O.
(1)求證:△ABC≌△DCB.
(2)當∠DBC=30°,BC=6時,求BO的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com