【題目】在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)

(1)判斷點M是否在直線y=﹣x+4上,并說明理由;

(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;

(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+bx的增大而增大時,則n取值范圍是  

【答案】(1)點M(3,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為35;(3)2<n<3.

【解析】

(1)將x=3代入y=-x+4,求出y=-3+4=1≠2,即可判斷點M(3,2)不在直線y=-x+4上;

(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(3,2)關于x軸的對稱點為點M1(3,-2);②點M(3,2)關于y軸的對稱點為點M2(-3,2).分別求出b的值,得到平移的距離;

(3)由直線y=kx+b經過點M(3,2),得到b=2-3k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+bx的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.

1)點M不在直線y=﹣x+4上,理由如下:

∵當x=3時,y=﹣3+4=1≠2,

∴點M(3,2)不在直線y=﹣x+4上;

(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.

①點M(3,2)關于x軸的對稱點為點M1(3,﹣2),

∵點M1(3,﹣2)在直線y=﹣x+4+b上,

﹣2=﹣3+4+b,

b=﹣3,

即平移的距離為3;

②點M(3,2)關于y軸的對稱點為點M2(﹣3,2),

∵點M2(﹣3,2)在直線y=﹣x+4+b上,

2=3+4+b,

b=﹣5,

即平移的距離為5.

綜上所述,平移的距離為35;

(3)∵直線y=kx+b經過點M(3,2),

2=3k+b,b=2﹣3k.

∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,

y=kn+b=﹣n+4,

kn+2﹣3k=﹣n+4,

k=

y=kx+bx的增大而增大,

k>0,即>0,

∴①,或②,

不等式組①無解,不等式組②的解集為2<n<3.

n的取值范圍是2<n<3.

故答案為2<n<3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務:

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設m是不小于﹣1的實數(shù),關于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數(shù)根x1、x2

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE

1)若∠BAE=40°,求∠C的度數(shù);

2)若△ABC周長為14cm,AC=6cm,求DC長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已等腰RtABC中,∠BAC90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰RtADE,∠DAE90°.連接CE

(1)如圖,求證:△ACE≌△ABD

(2)D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;

(3)AC,當CD1時,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠車間共有10名工人,調查每個工人的日均生產能力,獲得數(shù)據(jù)制成如下統(tǒng)計圖.

(1)求這10名工人的日均生產件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

(2)若要使占60%的工人都能完成任務,應選什么統(tǒng)計量(平均數(shù)、中位數(shù)、眾數(shù))做日生產件數(shù)的定額?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在中,,垂足為點H,若,,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DCB中,∠BAC=∠CDB=90°,AB=DC,AC與BD交于點O.

(1)求證:△ABC≌△DCB.

(2)當DBC=30°,BC=6時,求BO的長.

查看答案和解析>>

同步練習冊答案