【題目】如圖,把矩形ABCD沿直線EF折疊,若∠1=20°,則∠2=( 。
A.80°
B.70°
C.40°
D.20°

【答案】B
【解析】解:過G點(diǎn)作GH∥AD,如圖, ∴∠2=∠4,
∵矩形ABCD沿直線EF折疊,
∴∠3+∠4=∠B=90°,
∵AD∥BC,
∴HG∥BC,
∴∠1=∠3=20°,
∴∠4=90°﹣20°=70°,
∴∠2=70°.
故選B.

【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AEABC的角平分線;ED平分∠AEBAB于點(diǎn)D;CAE=B.

(1)如果AC=3.5 cm,求AB的長度;

(2)猜想:EDAB的位置關(guān)系,并證明你的猜想。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn)C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A,B兩點(diǎn),D,E分別是AB,OA上的動(dòng)點(diǎn),則△CDE周長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).

(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點(diǎn)D,⊙O經(jīng)過A、D兩點(diǎn),且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若 , ,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)P(2,3),點(diǎn)D是正比例函數(shù)圖象上的一點(diǎn),過點(diǎn)Dy軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點(diǎn)A,過點(diǎn)Ax軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點(diǎn)E.

(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.

(2)當(dāng)點(diǎn)D的縱坐標(biāo)為9時(shí),求:點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一游戲棋盤和一個(gè)質(zhì)地均勻的正四面體骰子(各面依次標(biāo)有1,2,3,4四個(gè)數(shù)字).游戲規(guī)則是游戲者每擲一次骰子,棋子按著地一面所示的數(shù)字前進(jìn)相應(yīng)的格數(shù).例如:若棋子位于A處,游戲者所擲骰子著地一面所示數(shù)字為3,則棋子由A處前進(jìn)3個(gè)方格到達(dá)B處.請用畫樹形圖法(或列表法)求擲骰子兩次后,棋子恰好由A處前進(jìn)6個(gè)方格到達(dá)C處的概率.

查看答案和解析>>

同步練習(xí)冊答案