【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長度;
(2)猜想:ED與AB的位置關系,并證明你的猜想。
【答案】(1)7cm;(2) ED⊥AB.理由見解析
【解析】
(1)根據(jù)30°角所對的直角邊等于斜邊的一半得出AB=2AC=7cm;
(2)先由∠EAB=∠B,根據(jù)等角對等邊得出EB=EA,又ED平分∠AEB,根據(jù)等腰三角形三線合一的性質得到ED⊥AB.
解:(1)∵AE是△ABC的角平分線,
∴∠CAE=∠EAB,
∵∠CAE=∠B,
∴∠CAE=∠EAB=∠B.
∵在△ABC中,∠C=90°,
∴∠CAE+∠EAB+∠B=3∠B=90°,
∴∠B=30°;
在△ABC中,∠C=90°,∠B=30°,AC=3.5cm,
∴AB=2AC=7cm;
(2)猜想:ED⊥AB.理由如下:
∵∠EAB=∠B,
∴EB=EA,
∵ED平分∠AEB,
∴ED⊥AB.(三線合一)
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=6,cos∠B= ,以點B為圓心,AB為半徑作圓B,以點C為圓心,半徑長為13作圓C,圓B與圓C的位置關系是( )
A.外切
B.相交
C.內切
D.內含
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地. 甲車先出發(fā)勻速駛向B地,40 min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時. 由于滿載貨物,為了行駛安全,速度減少了50 km/h,結果與甲車同時到達B地. 甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法:①a=4.5;②甲的速度是60 km/h;③乙出發(fā)80 min追上甲;④乙剛到達貨站時,甲距B地180 km.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國是一個嚴重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應交水費y元.
(1)若0<x≤6,請寫出y與x的函數(shù)關系式.
(2)若x>6,請寫出y與x的函數(shù)關系式.
(3)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:求若干個相同的有理數(shù)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”一般地,把(a≠0)記作a,讀作“a的圈c次方” .關于除方,下列說法正確的個數(shù)是( )
①任何非零數(shù)的圈2次方都等于1;②對于任何正整數(shù)c,1=1;③4③=3④ ;④負數(shù)的圈奇數(shù)次方結果是負數(shù),負數(shù)的圈偶數(shù)次方結果是正數(shù).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com