【題目】如圖,在正方形ABCD中,如果AF=BE,那么∠AOD的度數(shù)是  .

【答案】90°
【解析】解:由ABCD是正方形,得
AD=AB,∠DAB=∠B=90°.
在△ABE和△DAF中,
∴△ABE≌△DAF,
∴∠BAE=∠ADF.
∵∠BAE+∠EAD=90°,
∴∠OAD+∠ADO=90°,
∴∠AOD=90°,
所以答案是:90°.
【考點精析】通過靈活運用正方形的性質(zhì),掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點A的坐標(biāo)為(2,0),∠COA=60°,將菱形OABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)120°得到菱形ODEF.

(1)直接寫出點F的坐標(biāo):
(2)求線段OB的長及圖中陰影部分的面積:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax(a≠0)與y=在同一坐標(biāo)系中的大致圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

類別

重視

一般

不重視

人數(shù)

a

15

b


(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;

(3)若某校共有初中生2000名,請估計該校“重視課外閱讀名著”的初中生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點為O.求證:

(1)△CDE≌△DBF
(2)OA=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,y與x成反比例).

(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(4,0),B(0,),把一個直角三角尺DEF放在△OAB內(nèi),使其斜邊FD在線段AB上,三角尺可沿著線段AB上下滑動.其中∠EFD=30°,ED=2,點G為邊FD的中點.

(1)求直線AB的解析式;
(2)如圖1,當(dāng)點D與點A重合時,求經(jīng)過點G的反比例函數(shù)(k≠0)的解析式;
(3)在三角尺滑動的過程中,經(jīng)過點G的反比例函數(shù)的圖象能否同時經(jīng)過點F?如果能,求出此時反比例函數(shù)的解析式;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.

(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當(dāng)點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案