【題目】在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+c與x軸交于點A(-1,0),B(3,0),與y軸交于點C(0,3),頂點為G.
(1)求拋物線和直線AC的解析式;
(2)如圖1,設E(m,0)為x正半軸上的一個動點,若△CGE和△CGO的面積滿足S△CGE=S△CGO,求點E的坐標;
(3)如圖2,設點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向右運動,運動時間為ts,點M為射線AC上一動點,過點M作MN∥x軸交拋物線對稱軸右側部分于點N.試探究點P在運動過程中,是否存在以P,M,N為頂點的三角形為等腰直角三角形,若存在,求出t的值;若不存在,請說明理由.
【答案】(1);y=3x+3;(2)點E的坐標為:(1,0)或(-7,0);(3)存在,t的值為或或.
【解析】
(1)用待定系數法即能求出拋物線和直線AC解析式.
(2)△CGE與△CGO雖然有公共底邊CG,但高不好求,故把△CGE構造在比較好求的三角形內計算.延長GC交x軸于點F,則△FGE與△FCE的差即為△CGE.
(3)設M的坐標(e,3e+3),分別以M、N、P為直角頂點作分類討論,利用等腰直角三角形的特殊線段長度關系,用e表示相關線段并列方程求解,再根據e與AP的關系求t的值.
解:(1)將點A(-1,0),B(3,0),點C(0,3)代入拋物線y=ax2+bx+c得,
,解得,
∴,
設直線AC的解析式為y=kx+n,
將點A(-1,0),點C(0,3)代入得:,解得:k=3,n=3
∴直線AC的解析式為:y=3x+3
(2)延長GC交x軸于點F,過點G作GH⊥x軸于點H,
∵
∴G(1,4),GH=4,
∴,
若S△CGE=S△CGO,
則S△CGE=S△CGO=,
①若點E在x軸的正半軸,
設直線CG為,將G(1,4)代入得
∴,
∴直線CG的解析式為y=x+3,
∴當y=0時,x=-3,即F(-3,0)
∵E(m,0)
∴EF=m-(-3)=m+3
∴
=
=
=
=
∴,解得:m=1
∴E的坐標為(1,0)
②若點E在x軸的負半軸上,則點E到直線CG的距離與點(1,0)到直線CG的距離相等,
即點E到點F的距離等于點(1,0)到點F的距離,
∴EF=-3-m=1-(-3)=4
∴m=-7,即E(-7,0)
綜上所述,點E的坐標為:(1,0)或(-7,0)
(3)存在以P,M,N為頂點的三角形為等腰直角三角形,
設M(e,3e+3),e>-1,則,
①如圖2,若∠MPN=90°,PM=PN,
過點M作MQ⊥x軸于點Q,過N作NR⊥x軸于點R,
∵MN∥x軸
∴MQ=NR=3e+3
∴Rt△MQP≌Rt△NRP(HL)
∴PQ=PR,∠MPQ=∠NPR=45°
∴MQ=PQ=PR=NR=3e+3
∴xN=xM+3e+3+3e+3=7e+6,即N(7e+6,3e+3)
∵N在拋物線上
∴(7e+6)2+2(7e+6)+3=3e+3,
解得:(舍去),
∵AP=t,OP=t1,OP+OQ=PQ
∴t1e=3e+3
∴t=4e+4=,
②如圖3,若∠PMN=90°,PM=MN,
∴MN=PM=3e+3
∴xN=xM+3e+3=4e+3,即N(4e+3,3e+3)
∴(4e+3)2+2(4e+3)+3=3e+3
解得:e1=1(舍去),e2=,
∴t=AP=e(1)=,
③如圖4,若∠PNM=90°,PN=MN,
∴MN=PN=3e+3,N(4e+3,3e+3)
解得:e=
∴t=AP=OA+OP=1+4e+3=
綜上所述,存在以P,M,N為頂點的三角形為等腰直角三角形,t的值為或或.
科目:初中數學 來源: 題型:
【題目】為了迎接疫情徹底結束后的購物高峰,某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數量與用2400元購進乙種運動鞋的數量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且甲種運動鞋的數量不超過100雙,問該專賣店共有幾種進貨方案?
(3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數與一次函數的圖象交于兩點A(1,3)、B(n,-1).
(1)求這兩個函數的解析式;
(2)觀察圖象,請直接寫出不等式的解集;
(3)點C為x軸正半軸上一點,連接AO、AC,且AO=AC,求⊿AOC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且ADAO=AMAP.
(1)連接OP,證明:△ADM∽△APO;
(2)證明:PD是ΘO的切線;
(3)若AD=24,AM=MC,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=2.
(1)求反比例函數和一次函數的解析式.
(2)連接OB,MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a>0)圖象的頂點為點D,其圖象與x軸的交點A,B的橫坐標分別為﹣1和3,給出下列結論:①2a﹣b=0;②a+b+c<0;③3a+c=0;④當a=時,△ABD是等腰直角三角形.其中,正確的結論有( )
A.①②③B.③④C.②③④D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線:y=x2+2(a-1)x+a2-2a(a>0), P(2,3)在此拋物線上
(1)求該拋物線的解析式
(2)求直線 y=2x-2 與此拋物線的公共點個數;若有公共點,求出公共點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點,交邊AC于E點,若△ABC與△EBC的周長分別是40cm,24cm,則AB= cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數 y=ax2+bx 的圖象與 x 軸交于點 O(0,0)和 點 B,拋物線的對稱軸是直線 x=3.點 A 是拋物線在第一象限上的一個動點, 過點 A 作 AC⊥x 軸,垂足為 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求該二次函數的解析式;
(2)拋物線的對稱軸與 x 軸交于點 M.連接 AM,點 N 是線段 OA 上的一點.當 ∠AMN=∠AOM 時,求點 N 的坐標;
(3)點 P 是拋物線上的一個動點.點 Q 是 y 軸上的一動點.當以 A,B,P,Q 四個點為頂點的四邊形為平行四邊形時,直接寫出點 P 坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com