【題目】如圖,在ABC中,AB=AC,點DBC邊的中點,連接AD,分別過點A,CAEBC,CEAD交于點E,連接DE,交AC于點O

1)求證:四邊形ADCE是矩形;

2)若AB=10,sinCOE=,求CE的長.

【答案】1)證明見解析;(2CE=

【解析】

(1)根據(jù)等腰三角形的性質(zhì)得到AD⊥BC于點D,根據(jù)矩形的判定定理即可得到結(jié)論;

(2)過點E作EF⊥AC于F.解直角三角形即可得到結(jié)論.

(1)證明:∵AB=AC,點DBC邊的中點,

ADBC于點D

AEBC,CEAD

∴四邊形ADCE是平行四邊形.

∴平行四邊形ADCE是矩形.

(2)解: 過點EEFACF

AB=10,

AC=10.

∵對角線ACDE交于點O,

DE=AC=10.

OE=5.

∵sin∠COE=,

EF=4

OF=3.

OE=OC=5,

CF=2.

CE=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,以AC為直徑作O,交ABD

(1)在圖(1)中,用直尺和圓規(guī)過點DO的切線DEBC于點E(保留作圖痕跡,不寫作法)

(2)如圖(2),如果O的半徑為3ED4,延長EOOF,連接DF,與OA交于點G,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點坐標為M1,0),直線yx+m與該二次函數(shù)的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在y軸上.Pa0)是x軸上的一個動點,過Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點.

1)求m的值及這個二次函數(shù)的解析式;

2)若點P的橫坐標為2,求△ODE的面積;

3)當0a3時,求線段DE的最大值;

4)若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55.市場調(diào)査發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3.

1)求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點A,對點A作如下變換:

第一步:作點A關(guān)于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.

(1)A(23),q=2,直接寫出點A的對稱位似點的坐標;

(2)已知直線ly=kx-2,拋物線Cy=-x2+mx-2(m0).點N(2k-2)在直線l上.

①當k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;

②若直線l與拋物線C交于點M(x1y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)經(jīng)過原點O和點A20),B(﹣12)三點.

1)寫出拋物線的對稱軸和頂點坐標;

2)點(x1,y1),(x2,y2)在拋物線上,若x1x21,比較y1,y2的大小,并說明理由;

3)點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長方形地面,請觀察下列圖形,并解答有關(guān)問題:

1)在第n個圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個圖形)

2)上述鋪設(shè)方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;

3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當當和叮叮玩紙牌游戲:如圖是同一副撲克牌中的4張黑桃牌的正面,將這4張牌正面朝下洗勻后放在桌上,當當先從中抽出一張,叮叮從剩余的3張牌中也抽出一張,比較兩人抽出的牌面上的數(shù)字,數(shù)字大者獲勝.

1)求當當抽出的牌面上的數(shù)字為6的概率;

2)該游戲是否公平?請用畫樹狀圖或列表的方法說明理由.

查看答案和解析>>

同步練習冊答案