【題目】如圖,在△ABC中,AB=AC,點D是BC邊的中點,連接AD,分別過點A,C作AE∥BC,CE∥AD交于點E,連接DE,交AC于點O.
(1)求證:四邊形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的長.
【答案】(1)證明見解析;(2)CE=.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到AD⊥BC于點D,根據(jù)矩形的判定定理即可得到結(jié)論;
(2)過點E作EF⊥AC于F.解直角三角形即可得到結(jié)論.
(1)證明:∵AB=AC,點D是BC邊的中點,
∴AD⊥BC于點D.
∵AE∥BC,CE∥AD,
∴四邊形ADCE是平行四邊形.
∴平行四邊形ADCE是矩形.
(2)解: 過點E作EF⊥AC于F.
∵AB=10,
∴AC=10.
∵對角線AC,DE交于點O,
∴DE=AC=10.
∴OE=5.
∵sin∠COE=,
∴EF=4
∴OF=3.
∵OE=OC=5,
∴CF=2.
∴CE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過點D作⊙O的切線DE交BC于點E;(保留作圖痕跡,不寫作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長EO交⊙O于F,連接DF,與OA交于點G,求OG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標為M(1,0),直線y=x+m與該二次函數(shù)的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在y軸上.P(a,0)是x軸上的一個動點,過P作x軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點.
(1)求m的值及這個二次函數(shù)的解析式;
(2)若點P的橫坐標為2,求△ODE的面積;
(3)當0<a<3時,求線段DE的最大值;
(4)若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元.市場調(diào)査發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A,對點A作如下變換:
第一步:作點A關(guān)于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.
(1)若A(2,3),q=2,直接寫出點A的對稱位似點的坐標;
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點N(,2k-2)在直線l上.
①當k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;
②若直線l與拋物線C交于點M(x1,y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0),B(﹣1,2)三點.
(1)寫出拋物線的對稱軸和頂點坐標;
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小,并說明理由;
(3)點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長方形地面,請觀察下列圖形,并解答有關(guān)問題:
(1)在第n個圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為 (用含n的代數(shù)式表示,n表示第n個圖形)
(2)上述鋪設(shè)方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;
(3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當當和叮叮玩紙牌游戲:如圖是同一副撲克牌中的4張黑桃牌的正面,將這4張牌正面朝下洗勻后放在桌上,當當先從中抽出一張,叮叮從剩余的3張牌中也抽出一張,比較兩人抽出的牌面上的數(shù)字,數(shù)字大者獲勝.
(1)求當當抽出的牌面上的數(shù)字為6的概率;
(2)該游戲是否公平?請用畫樹狀圖或列表的方法說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com