【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點(diǎn)E、H分別在BC、AB上,若AE⊥DH于點(diǎn)O,求證AE=DH;

類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;
拓展應(yīng)用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點(diǎn),AF= AD,求HG的長

【答案】
(1)

證明:∵四邊形ABCD是正方形,

∴AB=DA,∠ABE=90°=∠DAH.

∴∠HAO+∠OAD=90°.

∵AE⊥DH,

∴∠ADO+∠OAD=90°.

∴∠HAO=∠ADO,

在△ABE和△DAH中

,

∴△ABE≌△DAH(ASA),

∴AE=DH.


(2)

解:EF=GH.

理由:如圖2,將FE平移到AM處,則AM∥EF,AM=EF.

將GH平移到DN處,則DN∥GH,DN=GH.

∵EF⊥GH,

∴AM⊥DN,

根據(jù)(1)的結(jié)論得AM=DN,

所以EF=GH;


(3)

解:如圖3,

過點(diǎn)F作FP⊥BC于點(diǎn)P,

∵四邊形ABCD是正方形,BC=4,

∴AD=BC=AB=FP=4,

∵E為BC的中點(diǎn),AF= AD,

∴BE=2,AF=1,

∴PE=2﹣1=1,

在Rt△FPE中,EF= = ,

由(2)得:HG=EF,

∴HG=


【解析】(1)由正方形的性質(zhì)得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;(2)將FE平移到AM處,則AM∥EF,AM=EF,將GH平移到DN處,則DN∥GH,DN=GH.根據(jù)(1)的結(jié)論得AM=DN,所以EF=GH;(3)過點(diǎn)F作FP⊥BC于點(diǎn)P,利用勾股定理得出EF的長,進(jìn)而得出HG的長.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市南縣大力發(fā)展農(nóng)村旅游事業(yè),全力打造洞庭之心濕地公園,其中羅文村的花海、涂鴉、美食特色游享譽(yù)三湘,游人如織.去年村民羅南洲抓住機(jī)遇,返鄉(xiāng)創(chuàng)業(yè),投入20萬元?jiǎng)?chuàng)辦農(nóng)家樂(餐飲+住宿),一年時(shí)間就收回投資的80%,其中餐飲利潤是住宿利潤的2倍還多1萬元.

(1)求去年該農(nóng)家樂餐飲和住宿的利潤各為多少萬元?

(2)今年羅南洲把去年的餐飲利潤全部用于繼續(xù)投資,增設(shè)了土特產(chǎn)的實(shí)體店銷售和網(wǎng)上銷售項(xiàng)目.他在接受記者采訪時(shí)說:我預(yù)計(jì)今年餐飲和住宿的利潤比去年會(huì)有10%的增長,加上土特產(chǎn)銷售的利潤,到年底除收回所有投資外,還將獲得不少于10萬元的純利潤.請問今年土特產(chǎn)銷售至少有多少萬元的利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3,…x軸上,點(diǎn)B1、B2、B3,…在直線l上.若OB1A,A1B2A2A2B3A3,…均為等邊三角形,則A5B6A6的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=3,BC=5,點(diǎn)E、F是BC、CD邊上的動(dòng)點(diǎn)(包括端點(diǎn)處),若將紙片沿EF折疊,使得點(diǎn)C恰好落在AD邊上點(diǎn)P處.設(shè)CF=x,則x的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.

(1)求∠1的度數(shù);

(2)求證:EFG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認(rèn)真觀察圖形,解答下列問題:

(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一節(jié),小麗獨(dú)自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因?yàn)閾?dān)心小麗下車后找不到路,姑姑一路小跑來到車站,結(jié)果客車晚點(diǎn),休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時(shí)間t的關(guān)系的大致圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)如圖所示的長方體的透明魚缸,假設(shè)其長AD=80 cm,高AB=60 cm,水深A(yù)E=40 cm,在水面上緊貼內(nèi)壁G處有一魚餌,G在水面線EF上,且EG=60 cm.一小蟲想從魚缸外的點(diǎn)A處沿缸壁爬到魚缸內(nèi)G處吃魚餌.

(1)小蟲應(yīng)該走怎樣的路線才可使爬行的路程最短?請畫出它的爬行路線,并用箭頭標(biāo)注;

(2)試求小蟲爬行的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為∠AOB內(nèi)一定點(diǎn),M,N分別是射線OA,OB上一點(diǎn),當(dāng)PMN周長最小時(shí),∠OPM=50°,則∠AOB=___________

查看答案和解析>>

同步練習(xí)冊答案