【題目】如圖,已知直線MN∥AB,把△ABC剪成三部分,點(diǎn)C在直線AB上,點(diǎn)O在直線MN上,則點(diǎn)O是△ABC的( )

A.垂心
B.重心
C.內(nèi)心
D.外心

【答案】C
【解析】如圖1,

過點(diǎn)O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F

∵M(jìn)N∥AB,OD=OE=OF(夾在平行線間的距離處處相等)

如圖2,

過點(diǎn)O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',

由裁剪知,OD=OD',OE=OE',OF=OF',

∴OD'=OE'=OF',

∴圖2中的點(diǎn)O是三角形三個內(nèi)角的平分線的交點(diǎn),

∴點(diǎn)O是△ABC的內(nèi)心,

所以答案是:C.

【考點(diǎn)精析】利用角平分線的性質(zhì)定理對題目進(jìn)行判斷即可得到答案,需要熟知定理1:在角的平分線上的點(diǎn)到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點(diǎn),在這個角的平分線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的骰子,骰子的六個面分別刻有1到6的點(diǎn)數(shù),朝上的面的點(diǎn)數(shù)中,一個點(diǎn)數(shù)能被另一個點(diǎn)數(shù)整除的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDBDC的平分線交于E,BE交CD于點(diǎn)F,1+2=90°.求證:

(1)ABCD

(2)2+3=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題.

用棋子擺成的T字形圖如圖所示:

(1)填寫下表:

圖形序號

每個圖案中棋子個數(shù)

5

8

(2)寫出第nT字形圖案中棋子的個數(shù)_________________(用含n的代數(shù)式表示);

(3)20T字形圖案共有棋子____________個?

(4)計算前20T字形圖案中棋子的總個數(shù).

(提示:請你先思考下列問題:第1個圖案與第20個圖案中共有多少個棋子?第2個圖案與第19個圖案中共有多少個棋子?第3個圖案與第18個圖案呢?)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(﹣2,0)、B(8,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心做菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD、BC于點(diǎn)M、N,試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為50°,則該三角形的底角為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,

(1)試說明

(2)AF與DC的位置關(guān)系如何? 為什么?

下面是本題的解答過程,請補(bǔ)充完整。

解:(1),(已知)

DEC (_____________________)

,(已知)

_______,(_____________________)

AB DE (_____________________)

(2)DC的位置關(guān)系是:_______________理由如下:

,(已知)

AGD (_____________________)

,(已知)

AGD 等量代換

_____ ____ (_____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:已知:A2a2+3ab2a1,B=﹣a2+ab1

1)求2A3B;

2)若A+2B的值與a的取值無關(guān),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列各題.

1)不改變分式的值,把下列分子和分母的最高次的系數(shù)都化為正數(shù)________

2)不改變分式的值,把下列分子和分母的中各項系數(shù)都化為整數(shù)________

3)若分式的值是整數(shù),求整數(shù)的值.

4)已知,求的值.

查看答案和解析>>

同步練習(xí)冊答案