【題目】某公司銷售一種進(jìn)價為20/個的計算器,其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:

價格x(元/個)

30

40

50

60

銷售量y(萬個)

5

4

3

2

同時,銷售過程中的其他開支(不含進(jìn)價)總計40萬元.

1)觀察并分析表中的yx之間的對應(yīng)關(guān)系,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識寫出y(萬個)與x(元/個)的函數(shù)解析式.

2)求出該公司銷售這種計算器的凈得利潤z(萬元)與銷售價格x(元/個)的函數(shù)解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?

3)該公司要求凈得利潤不能低于40萬元,請寫出銷售價格x(元/個)的取值范圍,若還需考慮銷售量盡可能大,銷售價格應(yīng)定為多少元?

【答案】1 y=x+8

2 z=x2+10x200,銷售價格定為50/個時凈得利潤最大,最大值是50萬元

340≤x≤60;銷售價格應(yīng)定為40/

【解析】

1)根據(jù)數(shù)據(jù)得出yx是一次函數(shù)關(guān)系,進(jìn)而利用待定系數(shù)法求一次函數(shù)解析式.

2)根據(jù)z=x20y40得出zx的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解即可.

3)首先求出40=x502+50x的值,從而二次函數(shù)的性質(zhì)根據(jù)得出x(元/個)的取值范圍,結(jié)合一次函數(shù)的性質(zhì)即可求得結(jié)果.

解:(1)根據(jù)表格中數(shù)據(jù)可得出:yx是一次函數(shù)關(guān)系,設(shè)解析式為:y=ax+b

,解得:

∴函數(shù)解析式為:y=x+8

2)根據(jù)題意得:

z=x20y40=x20)(x+8)﹣40=x2+10x200=x2100x)﹣200

=[x5022500]200=x502+50,

0,∴x=50,z最大=50

∴該公司銷售這種計算器的凈得利潤z與銷售價格x的函數(shù)解析式為z=x2+10x200,銷售價格定為50/個時凈得利潤最大,最大值是50萬元.

3)當(dāng)公司要求凈得利潤為40萬元時,即x502+50=40,解得:x1=40,x2=60

作函數(shù)圖象的草圖,

通過觀察函數(shù)y=x502+50的圖象,可知按照公司要求使凈得利潤不低于40萬元,則銷售價格的取值范圍為:40≤x≤60

yx的函數(shù)關(guān)系式為:y=x+8yx的增大而減少,

∴若還需考慮銷售量盡可能大,銷售價格應(yīng)定為40/個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,ABAC,點DBC上一點,∠ADE=∠B

1)求證:△ABD~△DCE;

2)點FAD上,且,求證:EFCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y(a2+1)x2+bx+c經(jīng)過點A(﹣3,t)、B4,t)兩點,則不等式(a2+1)x-2)2+bx<2b-c+t的解集是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形 ABCD 中,M,NP,Q 分別為邊 ABBC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結(jié)論中:①存在無數(shù)個四邊形 MNPQ 是平行四邊形;②存在無數(shù)個四邊形 MNPQ 是矩形;③存在無數(shù)個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結(jié)論的序號是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中 xOy 中,對于⊙C及⊙C內(nèi)一點 P,給出如下定義:若存在過點 P 的直線 l,使得它與⊙C 相交所截得的弦長為,則稱點 P 為⊙C的“k-近內(nèi)點”.

1)已知⊙O的半徑為 4,

①在點中,⊙O的“4-近內(nèi)點”是______________;

②點 P 在直線y=x上,若點 P 為⊙O的“4-近內(nèi)點”,則點 P 的縱坐標(biāo)y的取值范圍是____________;

2)⊙C的圓心為(-1,0),半徑為 3,直線x 軸,y 軸分別交于 MN,若線段 MN 上存在⊙C 2 -近內(nèi)點”,則 b 的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CACBABCDAB于點D,CD5,點O和點E在線段CD上,ED1,點P在邊AB上,以E為圓心,EP為半徑的圓與AB邊的另一個交點為點Q(點P在點Q的左側(cè)),以O為圓心,OC為半徑的圓O恰好經(jīng)過P、Q兩點,聯(lián)結(jié)CP,設(shè)線段AP的長度為x

1)當(dāng)圓E恰好經(jīng)過點O時,求圓E的半徑;

2)聯(lián)結(jié)CQ,設(shè)∠PCQ的正切值為y,求yx的函數(shù)關(guān)系式及定義域;

3)若∠PED3PCE,求SPCQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BCD=D=90°,E是邊AB的中點.已知AD=1,AB=2.

1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

2)當(dāng)∠B=70°時,求∠AEC的度數(shù);

3)當(dāng)△ACE為直角三角形時,求邊BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的直角坐標(biāo)系中,已知點A1,0)、B0,﹣2),將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°AC,若拋物線y=x2+bx+2經(jīng)過點C

1)求拋物線的解析式;

2)如圖,將拋物線平移,當(dāng)頂點至原點時,過Q0,﹣2)作不平行于x軸的直線交拋物線于E、F兩點,問在y軸的正半軸上是否存在一點P,使PEF的內(nèi)心在y軸上?若存在,求出點P的坐標(biāo);若不存在,說明理由.

3)在拋物線上是否存在一點M,使得以M為圓心,以為半徑的圓與直線BC相切?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線x軸于AC兩點,交y軸于點B,且OB=2CO.

(1)求二次函數(shù)解析式;

(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、Nx軸的垂線交x軸于點G、H兩點,當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;

(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案