【題目】如圖,在△ABC中,∠C=90°,∠B=30°
(1)在BC上作出點(diǎn)D,使它到A,B兩點(diǎn)的距離相等(用尺規(guī)作圖法,保留作圖痕跡,不要求寫(xiě)作法)
(2)若BD=6,求CD長(zhǎng).
【答案】(1)如圖所示,點(diǎn)D即為所求.見(jiàn)解析;(2)CD=3.
【解析】
(1)作線(xiàn)段AB的垂直平分線(xiàn),與BC的交點(diǎn)即為所求;
(2)連接AD,由作圖知AD=BD,∠B=∠BAD=30°,再由∠CAD=60°知∠CAD=30°,從而依據(jù)CD=AD可得答案.
(1)如圖所示,點(diǎn)D即為所求.
(2)如圖,連接AD,
由作圖知,BD=AD=6,
∵Rt△ABC中,∠B=30°,
∴∠CAB=60°,
∵BD=AD,
∴∠B=∠BAD=30°,
∴∠CAD=30°,
則CD=AD=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線(xiàn)AC⊥BD于點(diǎn)E,AB=BC,F為四邊形ABCD外一點(diǎn),且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線(xiàn)m:與x軸于點(diǎn)A、點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)將拋物線(xiàn)m繞點(diǎn)B旋轉(zhuǎn),得到新的拋物線(xiàn)n,它的頂點(diǎn)為,與x軸的另一個(gè)交點(diǎn)為.
當(dāng),時(shí),求拋物線(xiàn)n的解析式;
求證:四邊形是平行四邊形;
當(dāng)時(shí),四邊形可能是矩形嗎?若能,請(qǐng)求出拋物線(xiàn)m的解析式;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個(gè)小型的惠民停車(chē)場(chǎng),其布局如圖所示.已知停車(chē)場(chǎng)的長(zhǎng)為52米,寬為28米,陰影部分設(shè)計(jì)為停車(chē)位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車(chē)場(chǎng)共有車(chē)位64個(gè),據(jù)調(diào)查分析,當(dāng)每個(gè)車(chē)位的月租金為200元時(shí),可全部租出;當(dāng)每個(gè)車(chē)位的月租金每上漲10元,就會(huì)少租出1個(gè)車(chē)位.當(dāng)每個(gè)車(chē)位的月租金上漲多少元時(shí),停車(chē)場(chǎng)的月租金收入為14400元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與直線(xiàn)交于A,B兩點(diǎn),交x軸于D,C兩點(diǎn),已知,.
求拋物線(xiàn)的函數(shù)表達(dá)式并寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸;
在直線(xiàn)AB下方的拋物線(xiàn)上是否存在一點(diǎn)E,使得的面積最大?如果存在,求出E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
為拋物線(xiàn)上一動(dòng)點(diǎn),連接PA,過(guò)點(diǎn)P作交y軸于點(diǎn)Q,問(wèn):是否存在點(diǎn)P,使得以A、P、Q為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫(xiě)出所有符合條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩張長(zhǎng)為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對(duì)角線(xiàn)交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長(zhǎng)的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對(duì)角線(xiàn)交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過(guò)程中,得出所有重疊部分為菱形的四邊形中,周長(zhǎng)的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線(xiàn)段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線(xiàn)部分的最低點(diǎn),則△ABC的面積是( )
A. 10B. 12C. 20D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,有五個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙,我們可以把它剪開(kāi)拼成一個(gè)正方形.
(1)拼成的正方形的面積是 ,邊長(zhǎng)是 .
(2)把10個(gè)小正方形組成的圖形紙(如圖2),剪開(kāi)并拼成正方形.
①請(qǐng)?jiān)?/span>4×4方格圖內(nèi)畫(huà)出這個(gè)正方形.
②以小正方形的邊長(zhǎng)為單位長(zhǎng)度畫(huà)一條數(shù)軸,并在數(shù)軸上畫(huà)出表示-的點(diǎn).
(3)這種研究和解決問(wèn)題的方式,主要體現(xiàn)了 的數(shù)學(xué)思想方法.
A.?dāng)?shù)形結(jié)合 B.代入 C.換元 D.歸納
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時(shí)段內(nèi),甲樓對(duì)乙樓的采光的影響情況.假設(shè)某一時(shí)刻甲樓樓頂B落在乙樓的影子長(zhǎng)EC=h,太陽(yáng)光線(xiàn)與水平線(xiàn)的夾角為α.
(1)用含α的式子表示h;
(2)當(dāng)α=30°時(shí),甲樓樓頂B的影子落在乙樓的第幾層?從此時(shí)算起,若α每小時(shí)增加10°,幾小時(shí)后,甲樓的影子剛好不影響乙樓采光.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com