如圖,若∠A+∠B=180°,∠C=50°,則∠1=
50°
50°
,∠2=
130°
130°
分析:由∠A+∠B=180°,可判定AD∥BC,又由平行線的性質(zhì),即可求得答案.
解答:解:∵∠A+∠B=180°,
∴AD∥BC,
∴∠1=∠C=50°,
∴∠2=180°-∠1=130°.
故答案為:50°,130°.
點評:此題考查了平行線的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,若AB∥CD,∠ABE和∠CDE的平分線交于點F,且∠BED=75°,那么∠BFD等于( 。
A、35°B、37.5°C、38.5°D、36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,若大圓半徑為R,小圓面積是大圓面積的
29
,則陰影部分面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•阜陽一模)如圖,若開始輸入的x的值為正整數(shù),最后輸出的結(jié)果為144,則滿足條件的x的值為
29或6
29或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•重慶)如圖.若△ABC的BC邊上的高為AH,BC長為30cm,DE∥BC,以DE為直徑的半圓與BC切于F,若此半圓的面積是18πcm2,則AH=
10
10
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△AOB和△COD中,OA=OB,OC=OD.
(1)如圖①,若∠AOB=∠COD=60°,求證:①AC=BD      ②∠APB=60°.
(2)如圖②,若∠AOB=∠COD=α,則AC與BD間的等量關(guān)系式為
AC=BD
AC=BD
,∠APB的大小為
α
α
(直接寫出結(jié)果,不證明)

查看答案和解析>>

同步練習(xí)冊答案