如圖,已知拋物線y=
1
2
x2
+bx+c與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作DE⊥x軸于點(diǎn)D,連接DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
(1)由于拋物線經(jīng)過(guò)A(2,0),C(0,-1),
則有:
1
2
×4+2b+c=0
c=-1
,
解得
b=-
1
2
c=-1

∴拋物線的解析式為:y=
1
2
x2
-
1
2
x-1.

(2)∵A(2,0),C(0,-1),
∴直線AC:y=
1
2
x-1;
設(shè)D(x,0),則E(x,
1
2
x-1),
故DE=0-(
1
2
x-1)=1-
1
2
x;
∴△DCE的面積:S=
1
2
DE×|xD|=
1
2
×(1-
1
2
x)×x=-
1
4
x2+
1
2
x=-
1
4
(x-1)2+
1
4
,
因此當(dāng)x=1,
即D(1,0)時(shí),△DCE的面積最大,且最大值為
1
4


(3)由(1)的拋物線解析式易知:B(-1,0),
可求得直線BC的解析式為:y=-x-1;
設(shè)P(x,-x-1),因?yàn)锳(2,0),C(0,-1),則有:
AP2=(x-2)2+(-x-1)2=2x2-2x+5,
AC2=5,CP2=x2+(-x-1+1)2=2x2;
①當(dāng)AP=CP時(shí),AP2=CP2,有:
2x2-2x+5=2x2,解得x=2.5,
∴P1(2.5,-3.5);
②當(dāng)AP=AC時(shí),AP2=AC2,有:
2x2-2x+5=5,解得x=0(舍去),x=1,
∴P2(1,-2);
③當(dāng)CP=AC時(shí),CP2=AC2,有:
2x2=5,解得x=±
10
2
,
∴P3
10
2
,-
10
2
-1),P4(-
10
2
,
10
2
-1);
綜上所述,存在符合條件的P點(diǎn),且P點(diǎn)坐標(biāo)為:P1(2.5,-3.5)、P2(1,-2)、P3
10
2
,-
10
2
-1)、P4(-
10
2
10
2
-1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)和C(0,-3),線段BC與拋物線的對(duì)稱軸相交于點(diǎn)P.M、N分別是線段OC和x軸上的動(dòng)點(diǎn),運(yùn)動(dòng)時(shí)保持∠MPN=90°不變.連結(jié)MN,設(shè)MC=m.
(1)求拋物線的函數(shù)解析式;
(2)用含m的代數(shù)式表示△PMN的面積S,并求S的最大值;
(3)以PM、PN為一組鄰邊作矩形PMDN,當(dāng)此矩形全部落在拋物線與x軸圍成的封閉區(qū)域內(nèi)(含邊界)時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,從O點(diǎn)射出炮彈落地點(diǎn)為D,彈道軌跡是拋物線,若擊中目標(biāo)C點(diǎn),在A測(cè)C的仰角∠BAC=45°,在B測(cè)C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求拋物線解析式;
(2)求拋物線對(duì)稱軸和炮彈運(yùn)行時(shí)最高點(diǎn)距地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
①求拋物線的解析式.
②球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.
(2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過(guò)球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線C1的頂點(diǎn)坐標(biāo)是D(1,4),且經(jīng)過(guò)點(diǎn)C(2,3),又與x軸交于點(diǎn)A、E(點(diǎn)A在點(diǎn)E左邊),與y軸交于點(diǎn)B.
(1)拋物線C1的表達(dá)式是______;
(2)四邊形ABDE的面積等于______;
(3)問(wèn):△AOB與△DBE相似嗎?并說(shuō)明你的理由;
(4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F.另一條拋物線C2經(jīng)過(guò)點(diǎn)E(C2與C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸交于點(diǎn)G,并且以M、G、E為頂點(diǎn)的三角形與以點(diǎn)D、E、F為頂點(diǎn)的三角形全等,求a、b的值.(只需寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,圖①是一座拋物線型拱橋在建造過(guò)程中裝模時(shí)的設(shè)計(jì)示意圖,拱高為30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之間的距離均為15m,B1B5A1A5,將拋物線放在圖②所示的直角坐標(biāo)系中.
(1)直接寫(xiě)出圖②中點(diǎn)B1、B3、B5的坐標(biāo);
(2)求圖②中拋物線的函數(shù)表達(dá)式;
(3)求圖①中支柱A2B2、A4B4的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某科研所投資200萬(wàn)元,成功地研制出一種市場(chǎng)需求量較大的汽配零件,并投入資金700萬(wàn)元進(jìn)行批量生產(chǎn).已知每個(gè)零件成本20元.通過(guò)市場(chǎng)銷售調(diào)查發(fā)現(xiàn):當(dāng)銷售單價(jià)定為50元時(shí),年銷售量為20萬(wàn)件;銷售單價(jià)每增加1元,年銷售量將減少1000件.設(shè)銷售單價(jià)為x元,年銷售量為y(萬(wàn)件),年獲利為z(萬(wàn)元)
(1)試寫(xiě)出y與x之間的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍)
(2)試寫(xiě)出z與x之間的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍)
(3)當(dāng)銷售單價(jià)定為多少時(shí),年獲利最多?并求出這個(gè)年利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

養(yǎng)雞專業(yè)戶小李要建一個(gè)露天養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻足夠長(zhǎng)),其他邊用竹籬笆圍成,竹籬笆的長(zhǎng)為40m,讀九年級(jí)的兒子小軍為他設(shè)計(jì)了如下方案:如圖,把養(yǎng)雞場(chǎng)圍成等腰梯形ABCD,且∠ABC=120°.
(1)當(dāng)AB為何值時(shí),所圍的面積是132
3
m2

(2)當(dāng)AB為何值時(shí),所圍的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

飛機(jī)著陸后滑行的距離s(單位:米)與滑行的時(shí)間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t-1.5t2.飛機(jī)著陸后滑行______秒才能停下來(lái).

查看答案和解析>>

同步練習(xí)冊(cè)答案