【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長為1個單位,以O為原點建立平面直角坐標(biāo)系,圓心為 A(3,0)的⊙A被y軸截得的弦長BC=8.
解答下列問題:
(1)求⊙A 的半徑;
(2)請在圖中將⊙A 先向上平移 6 個單位,再向左平移8個單位得到⊙D,并寫出圓心D的坐標(biāo);
(3)觀察你所畫的圖形,對⊙D 與⊙A 的位置關(guān)系作出合情的猜想,并直接寫出你的結(jié)論.
【答案】(1)⊙A的半徑是5;(2)圖詳見解析,圓心D的坐標(biāo)是(﹣5,6);(3)⊙D 與⊙A 的位置關(guān)系是外切.
【解析】
(1)連接AB,根據(jù)垂徑定理求出BO,根據(jù)勾股定理求出AB即可;
(2)根據(jù)已知畫出圖形即可,根據(jù)平移規(guī)律求出D的坐標(biāo)即可;
(3)根據(jù)圖形即可得出結(jié)論.
(1)解:∵x軸⊥y軸,A在x軸上,
∴BO=CO=4,
連接AB,由勾股定理得:AB==5,
答:⊙A的半徑是5.
(2)解:如圖:
圓心D的坐標(biāo)是(﹣5,6).
(3)解:⊙D 與⊙A 的位置關(guān)系是外切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點為中點,如果點在線段上以每秒2cm的速度由點向點運動,同時,點在線段上由點向點運動.設(shè)點運動時間為秒,若某一時刻△BPE與△CQP全等,求此時的值及點的運動速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某風(fēng)景區(qū)的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,圖中陰影是草地,其余是水面.那么乘游艇游點C出發(fā),行進速度為每小時11千米,到達對岸AD最少要用 小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、QE
(1)求證:四邊形BPEQ是菱形:
(2)若AB=6,F是AB中點,OF=4,求菱形BPEQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD是角平分線,∠B=66°,∠C=54°.
(1)求∠ADB的度數(shù);
(2)若DE⊥AC于點E,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣3)2與x軸交于A、B兩點(點A在B的左側(cè)),與y軸交于C點,頂點D.
(1)求點A、B、D三點的坐標(biāo);
(2)連結(jié)CD交x軸于G,過原點O作OE⊥CD,垂足為H,交拋物線對稱軸于E,求出E點的縱坐標(biāo);
(3)以②中點E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動點P,過P作⊙E的切線,切點為Q,當(dāng)PQ的長最小時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標(biāo)不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、D在同一直線上,△ABC和△ECD都是等邊三角形,BE與AD相交于點M,
(1)求證:∠CBE=∠CAD;
(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com