【題目】O在直線PQ上,過點O作射線OC,使∠POC=130°,將一直角三角板的直角頂點放在點O.

1)如圖所示,將直角三角板AOB的一邊OA與射線OP重合,則∠BOC=________°.

2)將圖中的直角三角板AOB繞點O旋轉(zhuǎn)一定角度得到如圖所示的位置,若OA平分∠POC,求∠BOQ的度數(shù).

3)將圖中的直角三角板AOB繞點O旋轉(zhuǎn)一周,存在某一時刻恰有OB⊥OC,求出所有滿足條件的∠AOQ的度數(shù).

【答案】140;(225°;(3130°50°

【解析】

(1))根據(jù)∠BOC=POC90°代入數(shù)據(jù)計算即可;
(2)2)根據(jù)角平分線的定義可得∠AOP=AOC= POC= ×130°=65°,再由∠BOQ=180°-OP-AOB計算即可;
(3)分當(dāng)OB在∠POC內(nèi)部時和當(dāng)OB在∠POC外部時,計算即可.

解:(1∵∠BOC=∠POC-∠AOB

∴∠BOC=130°-90°=40°.

故答案為:40°.

2)解:∵OA平分∠POC,

∴∠AOP=∠AOC= ∠POC= ×130°=65°

∴∠BOQ=180°-∠OP-∠AOB=180-65°-90°=25°

3)解:如圖1,當(dāng)OB∠POC內(nèi)部時,則∠AOC=180°

∴∠AOQ=∠POC=130

如圖2,當(dāng)OB∠POC外部時,則OAOC重合,

∴∠AOQ=∠COQ=180°-130°=50°

綜上所述,∠AOQ的度數(shù)為130°50°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點M處放置了一臺定位儀器,設(shè)尋寶者行進(jìn)的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCDAB=4,BC=12,EF分別是AD、BC邊上的點,ED=3.將矩形紙片沿EF折疊,使點C落在AD邊上的點G處,點D落在點H處.

1)矩形紙片ABCD的面積為

2)如圖1,連結(jié)EC,四邊形CEGF是什么特殊四邊形,為什么?

3M,NAB邊上的兩個動點,且不與點A,B重合,MN=1,求四邊形EFMN周長的最小值.(計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABy軸交于點A,與x軸交于點B,點A的縱坐標(biāo)、點B的橫坐標(biāo)如圖所示.

1)求直線AB的解析式;


2)點P在直線AB上,是否存在點P使得△AOP的面積為1,如果有請直接寫出所有滿足條件的點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,直線ABx軸、y軸分別交于B、A兩點,等腰RtOCD,∠D90°,C坐標(biāo)為(﹣4,0).

1)求A、B坐標(biāo);

2)將△OCD沿x軸正方形平移,速度為1個單位為每秒,時間為t0t6),設(shè)△OCD與△OAB重疊面積為S,請寫出St之間的函數(shù)關(guān)系式;

3)將△OCDO點旋轉(zhuǎn),當(dāng)O、BD三點構(gòu)成的三角形為直角三角形時,請直接寫出D點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從左至右第1個圖由1個正六邊形,6個正方形和6個等邊三角形組成;第二個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成按此規(guī)律,第個圖中正方形和等邊三角形的個數(shù)之和為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,以BC為直徑作半圓,圓心為點O;以點C為圓心,BC為半徑作,過點OAC的平行線交兩弧于點DE,則陰影部分的面積是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),一次函數(shù)圖象經(jīng)過點B(-2,1),與y軸的交點為C,與x軸的交點為D

(1)求一次函數(shù)解析式;

(2)求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉行演講比賽,賽后整理參賽學(xué)生的成績,將比賽成績分為A,B,C,D四個等級,把結(jié)果列成下表(其中,m是常數(shù))并繪制如圖所示的扇形統(tǒng)計圖(部分).

等級

A

B

C

D

人數(shù)

6

10

m

8

(1)求m的值和A等級所占圓心角α的大。

(2)若從本次比賽中獲得A等級的學(xué)生中,選出2名取參加市中心學(xué)生演講比賽,已知A等級中男生有2名,求出所選2名學(xué)生中恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案