【題目】關(guān)于三角函數(shù)有如下公式:sinα+β)=sinαcosβ+cosαsinβsinαβ)=sinαcosβcosαsinβ;cosα+β)=cosαcosβsinαsinβ,cosαβ)=cosαcosβ+sinαsinβ;tanα+β)=1tanαtanβ≠0),合理利用這些公式可以將一些角的三角函數(shù)值轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如sin90°sin30°+60°)=sin30°cos60°+cos30°sin60°1,利用上述公式計(jì)算下列三角函數(shù)①sin105°,②tan105°=﹣2,③sin15°,④cos90°0,其中正確的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】

直接利用已知公式法分別代入計(jì)算得出答案.

sin105°=sin60°+45°

=sin60°cos45°+cos60°sin45°

=

=,故此選項(xiàng)正確;

tan105°=tan60°+45°

=

=

=

=-2-,故此選項(xiàng)正確;

sin15°=sin60°-45°

=sin60°cos45°-cos60°sin45°

=

=,故此選項(xiàng)正確;

cos90°=cos45°+45°

=cos45°cos45°-sin45°sin45°

=

=0,故此選項(xiàng)正確;

故正確的有4個(gè).

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:x軸交于點(diǎn),與y軸交于點(diǎn)B,點(diǎn)C是線段OA上一動(dòng)點(diǎn)以點(diǎn)A為圓心,AC長(zhǎng)為半徑作x軸于另一點(diǎn)D,交線段AB于點(diǎn)E,連結(jié)OE并延長(zhǎng)交于點(diǎn)F.

求直線l的函數(shù)表達(dá)式和的值;

如圖2,連結(jié)CE,當(dāng)時(shí),

求證:;

求點(diǎn)E的坐標(biāo);

當(dāng)點(diǎn)C在線段OA上運(yùn)動(dòng)時(shí),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=90°,點(diǎn)D在邊AB上,AD=AC=7BD=BC.動(dòng)點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CA向點(diǎn)A運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿DA向點(diǎn)A運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),點(diǎn)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)M、N運(yùn)動(dòng)的時(shí)間為t秒.

1)求cosA的值.

2)當(dāng)以MN為直徑的圓與ABC一邊相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,弦AB8,點(diǎn)C在圓O(CAB不重合),連接CACB,過點(diǎn)O分別作ODACOEBC,垂足分別是點(diǎn)DE

(1)求線段DE的長(zhǎng);

(2)點(diǎn)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,ADBC,垂足為D.給出下列四個(gè)結(jié)論:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正確的結(jié)論有_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測(cè)量學(xué)校教學(xué)樓的高度,教學(xué)樓AB的后面有一建筑物CD,他測(cè)得當(dāng)光線與地面成22°的夾角時(shí),教學(xué)樓在建筑物的墻上留下高2米高的影子CE;而當(dāng)光線與地面成45°的夾角時(shí),教學(xué)樓頂A在地面上的影子F與墻角C13米的距離(點(diǎn)B,F(xiàn),C在同一條直線上),則AE之間的長(zhǎng)為_____米.(結(jié)果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)多面體的展開圖,每個(gè)面上都標(biāo)注了字母,請(qǐng)你根據(jù)要求回答問題:

(1)這個(gè)多面體是一個(gè)什么物體?

(2)如果D是多面體的底部,那么哪一面會(huì)在上面?

(3)如果B在前面,C在左面,那么哪一面在上面?

(4)如果E在右面,F在后面,那么哪一面會(huì)在上面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為12BCBC邊上的高AD之比為32,矩形EFGH的邊EFBC上,點(diǎn)H,G分別在邊ABAC上,且HG2GF

(1)AD的長(zhǎng);

(2)求矩形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有兩點(diǎn)A(﹣2,4)、B2,4),若二次函數(shù)yax22ax3aa≠0)的圖象與線段AB只有一個(gè)交點(diǎn),則( 。

A. a的值可以是 B. a的值可以是

C. a的值不可能是﹣1.2 D. a的值不可能是1

查看答案和解析>>

同步練習(xí)冊(cè)答案