某商品的進(jìn)價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出150件.市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設(shè)每件漲價x元(x為非負(fù)整數(shù)),每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
【答案】分析:根據(jù)題意可得到函數(shù)關(guān)系式,并得到x的取值范圍.再得到總利潤的函數(shù)式,兩個式子結(jié)合起來,可得到定價.
解答:解:(1)由題意,y=150-10x,0≤x≤5且x為正整數(shù);
(2)設(shè)每星期的利潤為w元,
則w=(40+x-30)y
=(x+10)(150-10x)
=-10(x-2.5)2+1562.5
∵x為非負(fù)整數(shù),
∴當(dāng)x=2或3時,利潤最大為1560元,
又∵銷量較大,
∴x=2,即當(dāng)售價為42元時,每周的利潤最大且銷量較大,最大利潤為1560元.
點評:利用了二次函數(shù)的性質(zhì),以及總利潤=售價×銷量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價為每件40元,售價為每件60元時,每個月可賣出100件;如果每件商品的售價每上漲1元,則每個月少賣2件.設(shè)每件商品的售價為x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)當(dāng)售價的范圍是多少時,使得每件商品的利潤率不超過80%且每個月的利潤不低于2250元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價為每件40元,售價為每件60元時,每個月可賣出800件;如果每件商品的售價每上漲1元,則每個月少賣20件.設(shè)每件商品售價為x元,每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大銷售利潤?最大的月銷售利潤是多少元?
(3)物價部門規(guī)定每件商品的利潤率不高于100%,商家為了使每個月的銷售利潤不低于10000元,如何定價,商品的月銷售量最大?最大銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價為每件40元,售價是每件60元,每星期可賣出300件.市場調(diào)查反映:如果調(diào)整價格,每漲價一元,每星期要少賣出10件.設(shè)該商品定價為每件x元.
(1)該商店每星期的銷售量是
900-10x
900-10x
件(用含x的代數(shù)式表示);
(2)設(shè)商場每星期獲得的利潤為y元,求y與x的函數(shù)關(guān)系式;
(3)該商品應(yīng)定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•巴中)某商品的進(jìn)價為每件50元,售價為每件60元,每個月可賣出200件,如果每件商品的售價上漲1元,則每個月少買10件(每件售價不能高于72元),設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價為每件40元,售價是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價格進(jìn)行漲價銷售,每漲價一元,每星期要少賣出10件.該商品應(yīng)定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案