如圖,把△OAB放置于平面直角坐標(biāo)系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x軸的負(fù)方向平移2OA的長度后得到△DCE.
(1)若過原點的拋物線y=ax2+bx+c經(jīng)過點B、E,求此拋物線的解析式;
(2)若點P在該拋物線上移動,當(dāng)點P在第一象限內(nèi)時,過點P作PQ⊥x軸于點Q,連結(jié)OP.若以O(shè)、P、Q為頂點的三角形與以B、C、E為頂點的三角形相似,直接寫出點P的坐標(biāo);
(3)若點M(-4,n)在該拋物線上,平移拋物線,記平移后點M的對應(yīng)點為M′,點B的對應(yīng)點為B′.當(dāng)拋物線向左或向右平移時,是否存在某個位置,使四邊形M′B′CD的周長最短?若存在,求出此時拋物線的解析式;若不存在,請說明理由.
(1)依題意得:B(2,
3
2
)

∵OC=2,CE=
3
2
,∴E(-2,
3
2
)

∵拋物線經(jīng)過原點和點B、E,∴設(shè)拋物線的解析式為y=ax2(a≠0).
∵拋物線經(jīng)過點B(2,
3
2
)

3
2
=4a
.解得:a=
3
8

∴拋物線的解析式為y=
3
8
x2
;

(2)∵點P在拋物線上,
∴設(shè)點P的坐標(biāo)為(x,
3
8
x2).
分兩種情況:
(i)當(dāng)△OQP△BEC時,則
PQ
CE
=
OQ
BE
,即
3
8
x2
3
2
=
x
4
,解得:x=1,
∴點P的坐標(biāo)為(1,
3
8
);
(ii)當(dāng)△PQO△BEC時,則
PQ
BE
=
OQ
EC
,即
3
8
x2
4
=
x
3
2
,解得:x=
64
9

∴點P的坐標(biāo)為(
64
9
512
27
).
綜上所述,符合條件的點P的坐標(biāo)是P(1,
3
8
)
P(
64
9
,
512
27
)
;

(3)存在.
因為線段M'B'和CD的長是定值,所以要使四邊形M'B'CD的周長最短,只要使M'D+CB'最短.如果將拋物線向右平移,
顯然有M′D+CB′>MD+CB,因此不存在某個位置,使四邊形M′B′CD的周長最短,顯然應(yīng)該將拋物線y=
3
8
x2
向左平移.
由題知M(-4,6).
設(shè)拋物線向左平移了n個單位,則點M'和B′的坐標(biāo)分別為M′(-4-n,6)和B′(2-n,
3
2
).
因為CD=2,因此將點B′向左平移2個單位得B″(-n,
3
2
).
要使M'D+CB'最短,只要使M'D+DB″最短.
點M′關(guān)于x軸對稱點的坐標(biāo)為M″(-4-n,-6).
設(shè)直線M″B″的解析式y(tǒng)=kx+b(k≠0),點D應(yīng)在直線M″B″上,
∴直線M″B″的解析式為y=
6
n
x+
24
n

將B″(-n,
3
2
)代入,求得n=
16
5

故將拋物線向左平移
16
5
個單位時,四邊形M′B′CD的周長最短,此時拋物線的解析式為y=
3
8
(x+
16
5
)2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,斜坡PQ的坡度i=1:
3
,在坡面上點O處有一根1m高且垂直于水平面的水管OA,頂端A處有一旋轉(zhuǎn)式噴頭向外噴水,水流在各個方向沿相同的拋物線落下,水流最高點M比點A高出1m,且在點A測得點M的仰角為30°,以O(shè)點為原點,OA所在直線為y軸,過O點垂直于OA的直線為x軸建立直角坐標(biāo)系.設(shè)水噴到斜坡上的最低點為B,最高點為C.
(1)寫出A點的坐標(biāo)及直線PQ的解析式;
(2)求此拋物線AMC的解析式;
(3)求|xC-xB|;
(4)求B點與C點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的頂點P的坐標(biāo)為(1,-
4
3
3
),交x軸于A、B兩點,交y軸于點C(0,-
3
).
(1)求拋物線的表達式.
(2)把△ABC繞AB的中點E旋轉(zhuǎn)180°,得到四邊形ADBC.判斷四邊形ADBC的形狀,并說明理由.
(3)試問在線段AC上是否存在一點F,使得△FBD的周長最小?若存在,請寫出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-2x+42交x軸與點A,交直線y=x于點B,拋物線y=ax2-2x+c分別交線段AB、OB于點C、D,點C和點D的橫坐標(biāo)分別為16和4,點P在這條拋物線上.
(1)求點C、D的縱坐標(biāo).
(2)求a、c的值.
(3)若Q為線段OB上一點,且P、Q兩點的縱坐標(biāo)都為5,求線段PQ的長.
(4)若Q為線段OB或線段AB上的一點,PQ⊥x軸,設(shè)P、Q兩點之間的距離為d(d>0),點Q的橫坐標(biāo)為m,直接寫出d隨m的增大而減小時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A,C,D三點,且三點坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標(biāo)為______;
(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標(biāo);如不存在,說明理由;
(3)連結(jié)FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標(biāo)x的范圍:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面直角坐標(biāo)系xOy中,點A在拋物線y=
2
3
3
x2+
3
3
上,過A作AB⊥x軸于點B,AD⊥y軸于點D,將矩形ABOD沿對角線BD折疊后得A的對應(yīng)點為A′,重疊部分(陰影)為△BDC.
(1)求證:△BDC是等腰三角形;
(2)如果A點的坐標(biāo)是(1,m),求△BDC的面積;
(3)在(2)的條件下,求直線BC的解析式,并判斷點A′是否落在已知的拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,英華學(xué)校準(zhǔn)備圍成一個中間隔有一道籬笆的長方形花圃,現(xiàn)有長為24m的籬笆,一面靠墻(墻長為10m),設(shè)花圃寬AB為x(m),面積為S(m2).
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少;
(3)能圍出比45m2更大的花圃嗎?若能,求出最大的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P為拋物線y=
3
4
x2-
3
2
x+
1
4
上對稱軸右側(cè)的一點,且點P在x軸上方,過點P作PA垂直x軸于點A,PB垂直y軸于點B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點在x軸上,且sinA、sinB是關(guān)于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個根.
(1)判斷△ABC的形狀,關(guān)說明理由;
(2)求m的值;
(3)若這個三角形的外接圓面積為25π,求△ABC的內(nèi)接正方形(四個頂點都在三角形三邊上)的邊長.

查看答案和解析>>

同步練習(xí)冊答案