如圖,已知拋物線經(jīng)過點B(-2,3),原點O和x軸上另一點A,它的對稱軸與x軸交于點C(2,0).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)連接CB,在拋物線的對稱軸上找一點E,使得CB=CE,求點E的坐標(biāo);
(3)在(2)的條件下,連接BE,設(shè)BE的中點為G,在拋物線的對稱軸上是否存在點P,使得△PBG的周長最小?若存在,求出P點坐標(biāo);若不存在,請說明理由.
(1)由題意知:A(4,0);
設(shè)拋物線的解析式為y=ax(x-4),已知拋物線過B(-2,3);則有:
3=ax(-2)×(-2-4),
a=
1
4

∴拋物線的解析式為:y=
1
4
x2-x;

(2)過點B作BM⊥MC,
∵B點坐標(biāo)為:(-2,3),C點坐標(biāo)為:(2,0),
∴MC=4,BM=3,
BC=
BM2+MC2
=5,
∴|CE|=5,
∴E1(2,5),E2(2,-5);

(3)存在.
①當(dāng)E1(2,5)時,G1(0,4),設(shè)點B關(guān)于直線x=2的對稱點為D,
其坐標(biāo)為(6,3)
直線DG1的解析式為:y=-
1
6
x+4,
∴P1(2,
11
3

②當(dāng)E2(2,-5)時,G2(0,-1),直線DG2的解析式為:y=
2
3
x-1
∴P2(2,
1
3

綜合①、②存在這樣的點P,使得△PBG的周長最小,且點P的坐標(biāo)為(2,
11
3

或(2,
1
3
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在拋物線y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y軸負半軸上取一個點A1,使△OB1A1為等邊三角形;然后在第四象限取拋物線上的點B2,在y軸負半軸上取點A2,使△A1B2A2為等邊三角形;重復(fù)以上的過程,可得△A99B100A100,則A100的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O是原點,矩形OABC的頂點A在x軸的正半軸上,頂點C在y的正半軸上,點B的坐標(biāo)是(5,3),拋物線y=
3
5
x2+bx+c經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.
(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標(biāo);
(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當(dāng)點P到達點B時,P、Q同時停止運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
5
,AB=4.
(1)求點B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點B,求這個二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)P為對稱軸上一動點,求△APC周長的最小值;
(3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=x2-4x+3與x軸分別交于A、B兩點,交y軸于點C.
(1)求線段AC的長;
(2)求tan∠CBA的值;
(3)連接AC,試問在x軸左側(cè)否存在點Q,使得以C、O、Q為頂點的三角形和△OAC相似?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩塊完全相同的直角三角板ABC和DEF如圖1所示放置,點C、F重合,且BC、DF在一條直線上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不動,讓Rt△DEF沿CB向左平移,直到點F和點B重合為止.設(shè)FC=x,兩個三角形重疊陰影部分的面積為y.
(1)如圖2,求當(dāng)x=
1
2
時,y的值是多少?
(2)如圖3,當(dāng)點E移動到AB上時,求x、y的值;
(3)求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用一段長為30m的籬笆圍出一個一邊靠墻的矩形菜園,墻長為18m.設(shè)矩形的一邊長為xm,面積為ym2
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)菜園的面積能否達到120m2?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+
a
x
)(x>0)

探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗,先探索函數(shù)y=x+
1
x
(x>0)
的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
當(dāng)
x
-
1
x
=0,即x=1時,函數(shù)y=x+
1
x
(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

同步練習(xí)冊答案