在Rt△ABC中,∠A=90°,有一個銳角為60°,BC=6.若點P在直線AC上(不與點A,C重合),且∠ABP=30°,則CP的長為      .                                                                          


 624 .                                                                       

【考點】解直角三角形.                                                                         

【專題】壓軸題;分類討論.                                                                  

【分析】根據(jù)題意畫出圖形,分4種情況進行討論,利用直角三角形的性質解答.                    

【解答】解:如圖1:                                                                        

                                                            

當∠C=60°時,∠ABC=30°,與∠ABP=30°矛盾;                                            

如圖2:                                                                                             

                                                          

當∠C=60°時,∠ABC=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠CBP=60°,                                                                                  

∴△PBC是等邊三角形,                                                                         

∴CP=BC=6;                                                                                    

如圖3:                                                                                             

                                                                            

當∠ABC=60°時,∠C=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠PBC=60°﹣30°=30°,                                                                        

∴PC=PB,                                                                                        

∵BC=6,                                                                                           

∴AB=3,                                                                                           

∴PC=PB===2;                                                              

如圖4:                                                                                             

                                                                           

當∠ABC=60°時,∠C=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠PBC=60°+30°=90°,                                                                         

∴PC=BC÷cos30°=4.                                                                         

故答案為:6或2或4.                                                                  

【點評】本題考查了解直角三角形,熟悉特殊角的三角函數(shù)值是解題的關鍵.             

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


在Rt△ABC中,斜邊AB=3,則AB2+AC2+BC2=(     )

A.9       B.18     C.10     D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知∠MON,用三角尺按下列方法畫圖:

在∠MON的兩邊OM,ON上,分別取OA=OB,再分別過點A,B作ON,OM的垂線AD,BE,交ON,OM于點D,E,兩條垂線相交于點C,作射線OC,則射線OC平分∠MON.

問:

(1)△AOD與△BOE全等嗎?(不需證明)

(2)請利用(1)的結論證明射線OC平分∠MON.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


若三角形的兩邊長分別為7和9,則第三邊的長不可能是(     )

A.5       B.4       C.3       D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知,如圖CD是⊙O的切線,C是切點,直徑AB的延長線與CD相交于D,連接OC、BC.                  

(1)寫出三個不同類型的結論;                                                            

(2)若BD=OB,求證:CA=CD.                                                          

                                                                   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


若實數(shù)a,b滿足a+b2=1,則a2+b2的最小值是      .                       

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列計算中,正確的是( 。                                                              

A.        B.           C.           D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知:點A(x1,y1)、B(x2,y2)、C(x3,y3)是函數(shù)y=﹣圖象上的三點,且x1<0<x2<x3則y1、y2、y3的大小關系是(  )                                                                                        

A.y1<y2<y3              B.y2<y3<y1              C.y3<y2<y1              D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:﹣(2

查看答案和解析>>

同步練習冊答案