【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:DF=CF.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
【答案】(1)見(jiàn)解析;(2)OE=4EF,理由見(jiàn)解析.
【解析】
(1)先根據(jù)E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性質(zhì)即可得出OE是CD的垂直平分線,即可得到DF=CF;
(2)先根據(jù)E是∠AOB的平分線,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性質(zhì)可得出OE=2DE,同理可得出DE=2EF即可得出結(jié)論.
解:(1)∵E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,
∴DE=CE,OE=OE,
∴Rt△ODE≌Rt△OCE,
∴OD=OC,
∴△DOC是等腰三角形,
∵OE是∠AOB的平分線,
∴OE是CD的垂直平分線,
∴DF=CF;
(2)OE=4EF;
理由:∵OE是∠AOB的平分線,∠AOB=60°,
∴∠AOE=∠BOE=30°,
∵EC⊥OB,ED⊥OA,
∴OE=2DE,∠ODF=∠OED=60°,
∴∠EDF=30°,
∴DE=2EF,
∴OE=4EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角△ABC中,∠BAC=90°,AB=3,M是邊BC上的點(diǎn),連接AM.如果將△ABM沿直線AM翻折后,點(diǎn)B恰好在邊AC的中點(diǎn)處,那么點(diǎn)M到AC的距離是( )
A. 1.5 B. 2 C. 2.5 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,、兩點(diǎn)的坐標(biāo)分別為,,且滿足,的坐標(biāo)為
(1)判斷的形狀.
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以個(gè)單位/的速度在線段上運(yùn)動(dòng),另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以個(gè)單位/的速度在射線上運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.
①如圖2,若,直線交軸于,當(dāng)時(shí),求的值.
②如圖3,若,當(dāng)運(yùn)動(dòng)到中點(diǎn)時(shí),為上一點(diǎn),連,作交于.試探究和的數(shù)量關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的解析式是,則下列說(shuō)法正確的是( )
A. 拋物線的對(duì)稱軸是直線 B. 拋物線的頂點(diǎn)坐標(biāo)是 C. 該二次函數(shù)有最小值 D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形△ABC中,D為AB上的點(diǎn),E是BC延長(zhǎng)線上一點(diǎn),且.求證:EB=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)仔細(xì)觀察圖中等邊三角形圖形的變化規(guī)律,寫(xiě)出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點(diǎn)到三邊距離的數(shù)學(xué)事實(shí):_____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.
求證:四邊形是菱形;
若,菱形的面積為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,、分別是、的中點(diǎn),、分別是、的中點(diǎn).
求證:四邊形是菱形;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,為的中點(diǎn),過(guò)點(diǎn)且分別交于,交于,點(diǎn)是的中點(diǎn),且,則下列結(jié)論:;;四邊形為菱形;.其中正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com