【題目】甲、乙兩地相距135千米,大小兩輛汽車從甲地開往乙地,大汽車比小汽車早出發(fā)4小時(shí),小汽車比大汽車早到30分鐘,小汽車和大汽車的速度之比為5∶2,求兩車的速度.
【答案】解:設(shè)小汽車的速度為5x千米/時(shí),則大汽車的速度為2x千米/時(shí),列方程得: ,解得 ,經(jīng)檢驗(yàn), 是原方程的解,且符合題意,所以 , ,所以小汽車的速度為45千米/時(shí),則大汽車的速度為18千米/時(shí)
【解析】根據(jù)已知條件小汽車和大汽車的速度之比為5∶2,可設(shè)小汽車的速度為5x千米/時(shí),則大汽車的速度為2x千米/時(shí),相等關(guān)系是小汽車走135千米所用的時(shí)間=大汽車走135千米所用的時(shí)間-先走的4小時(shí)-晚到的半小時(shí),根據(jù)相等關(guān)系列方程,解這個(gè)分式方程,并檢驗(yàn)即可求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,不經(jīng)過(guò)原點(diǎn)的直線與雙曲線y=相交于點(diǎn)A(m,2),B(n,﹣1),其中m>0,n<0.
(1)求m與n之間的數(shù)量關(guān)系;
(2)若OA=OB,求該雙曲線和直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C(,0),AOCD為矩形,AE垂直于對(duì)角線OD于E,點(diǎn)F是點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn),連AF、OF.
(1)求AF和OF的長(zhǎng);
(2)如圖②,將△OAF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與線段AD交于點(diǎn)P,與線段OD交于點(diǎn)Q,是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)組織了環(huán)保知識(shí)競(jìng)賽活動(dòng),初中三個(gè)年級(jí)根據(jù)初賽成績(jī)分別選出了10名同學(xué)參加決賽(滿分為100分)如表所示:
決賽成績(jī)(單位:分)
(1)請(qǐng)你填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 85.5 | 87 | |
八年級(jí) | 85.5 | 85 | |
九年級(jí) | 84 |
(2)請(qǐng)從以下兩個(gè)不同的角度對(duì)三個(gè)年級(jí)的決賽成績(jī)進(jìn)行分析:
從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個(gè)年級(jí)成績(jī)好些):;
從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個(gè)年級(jí)成績(jī)好些):;
(3)如果在每個(gè)年級(jí)參加決賽的選手中分別選出三人參加決賽,你認(rèn)為哪個(gè)年級(jí)的實(shí)力更強(qiáng)一些。說(shuō)明理由:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線相交于點(diǎn)O;E、F、G、H分別是AD、BD、 BC、AC的中點(diǎn).
(1)說(shuō)明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個(gè)什么條件時(shí),四邊形EFGH是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任意一點(diǎn)(x,y),若規(guī)定以下兩種變換:
①f(x,y)=(x+2,y),
②g(x,y)=(﹣x,﹣y),例如按照以上變換有:f(1,1)=(3,1);g(f(1,1))=g(3,1)=(﹣3,﹣1).
則f(g(2,5))=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)村在開展“美麗鄉(xiāng)村”建設(shè)時(shí),決定購(gòu)買A,B兩種樹苗對(duì)村里的主干道進(jìn)行綠化改造,已知購(gòu)買A種樹苗3棵,B種樹苗4棵,需要380元;購(gòu)買A種樹苗5棵,B種樹苗2棵,需要400元.
(1)求購(gòu)買A,B兩種樹苗每棵各需多少元?
(2)現(xiàn)需購(gòu)買這兩種樹苗共100棵,要求購(gòu)買A種樹苗不少于60棵,且用于購(gòu)買這兩種樹苗的資金不超過(guò)5620元.則有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,對(duì)角線、交于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且,連接.求證:
()是等邊三角形.
().
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com