【題目】如圖所示為322日至27日間,我區(qū)每日最高氣溫與最低氣溫的變化情況.

1)最低氣溫的中位數(shù)是 ℃;324日的溫差是 ℃;

2)分別求出322日至27日間的最高氣溫的平均數(shù)、最低氣溫的平均數(shù);

3)經(jīng)過計算,最高氣溫和最低氣溫的方差分別為6.33、5.67,數(shù)據(jù)更穩(wěn)定的是最高氣溫還是最低氣溫?

【答案】16.5;14; 2322日至27日間的最高氣溫的平均數(shù)是14℃,最低氣溫的平均數(shù)是6℃;(3)數(shù)據(jù)更穩(wěn)定的是最低氣溫.

【解析】

1)將最低氣溫按照從低到高進行排列,按照中位數(shù)的計算方法進行計算;溫差用最高氣溫減去最低氣溫即可;

2)按照平均數(shù)的計算方法計算即可;

3)方差小則穩(wěn)定,方差大則不穩(wěn)定,進行判斷即可.

解:(1)由圖知,最低氣溫從低到高排列為:1,,,,,

所以最低氣溫的中位數(shù)為:

由圖知:3.24日的最高氣溫為:15℃,最低氣溫為1℃

所以3.24日的氣溫差為:15℃-1℃=14℃

2)最高氣溫平均數(shù):×(18+12+15+12+11+16)=14(℃);

最低氣溫平均數(shù):×(7+8+1+6+6+8)=6(℃);

322日至27日間的最高氣溫的平均數(shù)是14℃,最低氣溫的平均數(shù)是6℃

3)因為最高氣溫的方差為6.33,,最低氣溫的方差為5.67

所以6.335.67

故數(shù)據(jù)更穩(wěn)定的是最低氣溫.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線

理解:

如圖1,ABC的三個頂點均在正方形網(wǎng)格中的格點上,若四邊形ABCD是以AC相似對角線的四邊形,請用無刻度的直尺在網(wǎng)格中畫出點D(保留畫圖痕跡,找出3個即可);

如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對角線BD平分∠ABC. 請問BD是四邊形ABCD相似對角線嗎?請說明理由;

運用:

如圖3,已知FH是四邊形EFGH相似對角線, EFH=∠HFG30°.連接EG,若EFG的面積為,求FH 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,拋物線yax2+bx+c過點A(﹣1,0),B30),C0,3),點P是直線BC上方拋物線上的一動點,PEy軸,交直線BC于點E連接AP,交直線BC于點 D

1)求拋物線的函數(shù)表達式;

2)當AD2PD時,求點P的坐標;

3)求線段的最大值;

4)當線段最大時,若點F在直線BC上且∠EFP2ACO,直接寫出點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點

求一次函數(shù)和反比例函數(shù)的表達式;

請直接寫出時,x的取值范圍;

過點B軸,于點D,點C是直線BE上一點,若,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點P⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為的等邊三角形.將△ABC繞點A逆時針旋轉(zhuǎn)角θθ180°),得到△ADE,BDEC所在直線相交于點O

1)如圖a,當θ=20°時,判斷△ABD與△ACE是否全等?并說明理由;

2)當△ABC旋轉(zhuǎn)到如圖b所在位置時(60°θ120°),求∠BOE的度數(shù);

3)在θ60°120°的旋轉(zhuǎn)過程中,點O運動的軌跡長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑長為1,ABAC是⊙O的兩條弦,且ABACBO的延長線交AC于點D,連接OA、OC

1)求證:OAD∽△ABD;

2)當OCD是直角三角形時,求B、C兩點的距離;

3)記AOB、AOD、COD的面積分別為S1、S2S3,如果S22S1S3,試證明點D為線段AC的黃金分割點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸是,且過點,有下列結論:①;②;③;④;⑤.其中正確的結論是______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù)的四個命題:

①當x=0時,y有最小值12;

n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;

③若n3,且n是整數(shù),當時,y的整數(shù)值有個;

④若函數(shù)圖象過點,其中a0,b0,則ab

其中真命題的序號是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案