【題目】問題發(fā)現(xiàn):如圖1,△ABC是等邊三角形,點D是邊AD上的一點,過點DDEBCACE,則線段BDCE有何數(shù)量關(guān)系?

拓展探究:如圖2,將△ADE繞點A逆時針旋轉(zhuǎn)角α0°<α360°),上面的結(jié)論是否仍然成立?如果成立,請就圖中給出的情況加以證明.

問題解決:如果△ABC的邊長等于2,AD2,直接寫出當(dāng)△ADE旋轉(zhuǎn)到DEAC所在的直線垂直時BD的長.

【答案】問題發(fā)現(xiàn):BDCE;拓展探究:結(jié)論仍然成立,見解析;問題解決:BD的長為22

【解析】

問題發(fā)現(xiàn):如圖1,由平行線分線段成比例定理可得BDCE

拓展探究:如圖2,證明BAD≌△CAE,可得BDCE;

問題解決:分兩種情況:①如圖3,在直角三角形中,根據(jù)30°角所對的直角邊等于斜邊的一半求出DG1,由勾股定理求出AG,得出BG,從而計算出BD的長.

②如圖4,求EF的長和CF的長,根據(jù)勾股定理在RtEFC中求EC的長,所以BDEC2

: 問題發(fā)現(xiàn):如圖1,BD=CE,理由是

ABC是等邊三角形,

AB=AC,

DEBC,

BD=CE,
拓展探究:結(jié)論仍然成立,如圖2,
由圖1,ADE是等邊三角形,

AD=AE,
由旋轉(zhuǎn)得∠BAD=CAE,BADCAE,(旋轉(zhuǎn)的性質(zhì))
BD=CE,
問題解決:當(dāng)ADE旋轉(zhuǎn)到DEAC所在的直線垂直時,設(shè)垂足為點F,此時有兩種情況:

①如圖3,

ADE是等邊三角形,AFDE,

∴∠DAF=EAF=30°,
∴∠BAD=30°,
DDGAB,垂足為G,

AD=2,
DG=1,AG=,

AB=2,
BG=AB-AG=,
BD=2(勾股定理),
②如圖4,

同理得BADCAE,

BD=CE,
∵△ADE是等邊三角形,

∴∠ADE=60°,
AD=AE,DEAC,
∴∠DAF=EAF=30°,
EF=FD=AD=1,

AF=,
CF=AC+CF=2+=3,

RtEFC,EC=,

BD=EC=2.

綜上所述,BD的長為22.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(初步認(rèn)識)

1)如圖,將ABO繞點O順時針旋轉(zhuǎn)90°得到MNO,連接AM、BM,

求證AOM∽△BON

(拓展延伸)

2)如圖,在等邊ABC中,點EABC內(nèi)部,且滿足AE2BE2CE2,用直尺和圓規(guī)作出所有的點E(保留作圖的痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yax2+bx+ca≠0)的圖象于x軸的交點坐標(biāo)分別為(x1,0),(x20),且x1x2,圖象上有一點Mx0,y0)在x軸下方,對于以下說法:①b24ac0xx0是方程ax2+bx+cy0的解③x1x0x2ax0x1)(x0x2)<0其中正確的是( 。

A.①③④B.①②④C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大眾服裝店今年4月用4000元購進了一款襯衣若干件,上市后很快售完,服裝店于5月初又購進該款襯衣,進貨量比第一批增加了20%,由于第二批襯衣進貨時價格比第一批襯衣進貨時價格提高了20元,結(jié)果第二批襯衣進貨用了6000

1)第一批襯衣進貨時價格是多少?

2)第一批襯衣售價為120/件,為保證第二批襯衣的利潤率不低于第一批襯衣的利潤率,那么第二批襯衣每件售價至少是多少元?(提示:利潤=售價﹣成本,利潤率=利潤÷成本×100%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某教學(xué)活動小組選定測量小山上方某信號塔PQ的高度,他們在A處測得信號塔頂端P的仰角為45°,信號塔低端Q的仰角為31°,沿水平地面向前走100米到處,測得信號塔頂端P的仰角為68°.求信號塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.

(1)求拋物線的解析式;

(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.

①求點P的坐標(biāo);

②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對角線ACBD交于點O,AC平分BAD,過點CCEABAB的延長線于點E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若ABBD=2,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組的同學(xué)測量一架無人飛機P的高度,如圖,A,B兩個觀測點相距,在A處測得P在北偏東71°方向上,同時在B處測得P在北偏東35°方向上.求無人飛機P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,sin71°0.95,tan71°2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,王老師讓同學(xué)們對給定的正方形ABCD,如圖.建立合適的平面直角坐標(biāo)系,并表示出各頂點的坐標(biāo).下面是4名同學(xué)表示各頂點坐標(biāo)的結(jié)果:

甲同學(xué):A0,1),B0,0),C1,0),D1,1);

乙同學(xué):A00),B0,-1),C1,-1),D10);

丙同學(xué):A10),B1,-2),C3,-2),D3,0);

丁同學(xué):A(-12),B(-1,0),C0,0),D0,2);

上述四名同學(xué)表示的結(jié)果中,四個點的坐標(biāo)都表示正確的同學(xué)是( )

A. 甲、乙、丙B. 乙、丙、丁C. 甲、丙D. 甲、乙、丙、丁

查看答案和解析>>

同步練習(xí)冊答案