如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E為CD的中點,交BC的延長線于F;
(1)證明:EF=EA;
(2)過D作DG⊥BC于G,連接EG,試證明:EG⊥AF.

(1)證明:
∵AD∥BC,
∴∠DAE=∠F,∠ADE=∠FCE.
∵E為CD的中點,
∴ED=EC.
∴△ADE≌△FCE(AAS).
∴EF=EA.

(2)解:連接GA,
∵AD∥BC,∠ABC=90°,
∴∠DAB=90°.
∵DG⊥BC,
∴四邊形ABGD是矩形.
∴BG=AD,GA=BD.
∵BD=BC,
∴GA=BC.
由(1)得△ADE≌△FCE,
∴AD=FC.
∴GF=GC+FC=GC+AD=GC+BG=BC=GA.
∵由(1)得EF=EA,
∴EG⊥AF.
分析:(1)求簡單的線段相等,可證它們所在的三角形全等,即證明△ADE≌△FCE即可;
(2)由(1)知FE=EA,若EG⊥AF,則△AGF必為等腰三角形,因此可連接AG,證AG=GF;
易知四邊形ABGD是矩形,則AG=BD=DC,AD=BG;由(1)知:AD=CF=BG,即可證得AG=FG=BC,進而可根據(jù)等腰三角形三線合一的性質(zhì)得出所求的結(jié)論.
點評:此題綜合考查了全等三角形的判定和性質(zhì)、矩形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,綜合性強,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案