【題目】二次函數(shù)y=(x12的頂點坐標是( 。

A.0,﹣1B.01C.(﹣1,0D.1,0

【答案】D

【解析】

已知解析式為拋物線的頂點式,根據(jù)頂點式的坐標特點,直接寫出即可.

解:因為y=(x12是拋物線的頂點式,根據(jù)頂點式的坐標特點,頂點坐標為(1,0).

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,EG∥AF,請你從下面三個條件中,再選出兩個作為已知條件,另一個作為結(jié)論,推出一個正確的命題.并證明這個命題(只寫出一種情況)①AB=AC ②DE=DF ③BE=CF
已知:EG∥AF, ,
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一組數(shù)據(jù)x1 , x2 , …,xn的方差是4,則另一組數(shù)據(jù)x1+3,x2+3,…,xn+3的方差是( 。
A.4
B.7
C.8
D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)

(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】括號前面是“+”號,括到括號里的各項都_________;括號前面是“-”號,括到括號里的各項都___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計得到一組數(shù)據(jù),最大值是136,最小值是52,取組距為10,可以分成組。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2-4ax+a2+2(a<0)圖像的頂點G在直線AB上,其中A(,0)、B(0,3),

對稱軸與x軸交于點E.

(1)求二次函數(shù)y=ax2-4ax+a2+2的關(guān)系式;

(2)點P在對稱軸右側(cè)的拋物線上,且AP平分四邊形GAEP的面積,求點P坐標;

(3)在x軸上方,是否存在整數(shù)m,使得當< x ≤時,拋物線y隨x增大而增大,若存在,求出所有滿足條件的m值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個暗箱中有大小相同的1只黑球和n只白球(記為白1、白2、…、白n),每次從中取出一只球,取到白球得1分,取到黑球得2分,甲從暗箱中有放回地依次取出2只球,而乙是從暗箱中一次性取出2只球.

(1)若n=2,分別求甲取得3分的概率和乙取得3分的概率;(請用“畫樹狀圖”或“列表”等方式給出分析過程)

(2)若乙取得3分的概率小于,則白球至少有多少個?(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幼兒園阿姨給x個小朋友分糖果,如果每人分4顆則少13顆;如果每人分3顆則多15顆,根據(jù)題意可列方程為______

查看答案和解析>>

同步練習冊答案