分析 (1)由平行四邊形的性質(zhì)得出AD=BC,∠ABC+∠BAD=180°,由等腰三角形的性質(zhì)得出∠ABC=∠ACB.證出∠BAD=∠ACE,CE=AD,由SAS證明△ADB≌△CEA即可;
(2)由全等三角形的性質(zhì)得出AE=BD=6,由平行線得出△ADF∽△EBF,得出對應邊成比例,即可得出結(jié)果.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,∠ABC+∠BAD=180°.
又∵AB=AC,
∴∠ABC=∠ACB.
∵∠ACB+∠ACE=180°,
∴∠BAD=∠ACE.
∵CE=BC,
∴CE=AD,
在△ABE和△CEA中,$\left\{\begin{array}{l}{CE=AD}&{\;}\\{∠BAD=∠ACE}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△ADB≌△CEA(SAS).
(2)解:∵△ADB≌△CEA,
∴AE=BD=6.
∵AD∥BC,
∴△ADF∽△EBF.
∴$\frac{AF}{EF}$=$\frac{AD}{BE}$=$\frac{1}{2}$.
∴$\frac{AF}{AE}$=$\frac{1}{3}$.
∴AF=2.
點評 本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | i |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (2,5) | B. | (-8,5) | C. | (-8,-1) | D. | (2,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com