【題目】如圖,正方形的邊長為8,的中點,邊上的動點,連結(jié),以點為圓心,長為半徑作.

1)當(dāng)________時,

2)當(dāng)與正方形的邊相切時,求的長;

3)設(shè)的半徑為,請直接寫出正方形恰好有兩個頂點在圓內(nèi)的的取值范圍.

【答案】1;(2的長為3;(3.

【解析】

1)根據(jù)相似三角形對應(yīng)邊成比例列出方程即可解答;

2)⊙P與正方形ABCD的邊相切時有兩種情況,分別是與CD邊和AD邊相切,分別畫出圖形,用勾股定理即可解答;

3)因為B點始終在圓內(nèi),所以正方形ABCD中恰好有兩個頂點在圓內(nèi),是C在圓內(nèi),D點在圓上或園外,求出它們的極值即可解答

1)∵∠B=∠C=90°,ΔMBPΔDCP;

設(shè)BP=x,則CP=4-x,

AB=CD=8BP==4

,

2)解:如圖1,當(dāng)與邊相切時,

設(shè),

中,,

,

,

,.

如圖2,當(dāng)與邊相切時,

設(shè)切點為,連接,

,四邊形是矩形.

,

,,

中,.

綜上所述,的長為3.

3.

如圖1,當(dāng)時,經(jīng)過點,點

如圖3,當(dāng)經(jīng)過點,點

,

,

.

∴⊙P的半徑為x,當(dāng),正方形ABCD中恰好有兩個頂點在圓內(nèi)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形的內(nèi)接四邊形,連接,的直徑,于點

(1)如圖,求證:

(2)如圖,連接,當(dāng)時,求證:;

(3)如圖,在(2)的條件下,延長于點,連接 ,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙可在方格D、E、F中移動甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖

(1)若乙固定在E,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是多少;

(2)若甲、乙均可在本層移動用畫樹狀圖法或列表法求出黑色方塊所構(gòu)成拼圖是軸對稱圖形的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把邊長為cm的等邊剪成四部分,從三角形三個頂點往下bcm處,呈30°角下剪刀,使中間部分形成一個小的等邊.若的面積是,則的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一動點從半徑為2上的點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;接著又從點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;間的距離是________;…按此規(guī)律運動到點處,則點與點間的距離是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,甲、乙兩名大學(xué)生騎自行車去距學(xué)校6000米的凈月潭公園.兩人同時從學(xué)校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時,甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時,距學(xué)校的路程.

(3)當(dāng)兩人相距500米時,直接寫出t的值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A-23)關(guān)于y軸的對稱點為點B,連接AB,反比例函數(shù)y=x0)的圖象經(jīng)過點B,過點BBCx軸于點C,點P是該反比例函數(shù)圖象上任意一點.

1)求k的值;

2)若△ABP的面積等于2,求點P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的邊,點,分別在軸,軸上,反比例函數(shù)的圖象經(jīng)過點,且與邊交于點.

(1)求反比例函數(shù)的解析式;

(2)求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,在平面直角坐標(biāo)系中,拋物線軸交于兩點,與軸交于點,點為該拋物線的頂點.

1)如圖甲,點為拋物線上兩點間的一動點,連接,,當(dāng)面積最大時,在對稱軸上有一動點,如圖乙所示,過點軸交軸于點,連接,,求的最小值,并求出此時點的坐標(biāo);

2)如圖丙所示,將繞著點旋轉(zhuǎn),得到,在旋轉(zhuǎn)過程中,是否存在某個時刻使以點為頂點的三角形為以為腰的等腰三角形,如果存在,請直接寫出此時點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案