【題目】如圖,正方形的邊長為8,是的中點,是邊上的動點,連結(jié),以點為圓心,長為半徑作.
(1)當(dāng)________時,;
(2)當(dāng)與正方形的邊相切時,求的長;
(3)設(shè)的半徑為,請直接寫出正方形中恰好有兩個頂點在圓內(nèi)的的取值范圍.
【答案】(1);(2)的長為3或;(3).
【解析】
(1)根據(jù)相似三角形對應(yīng)邊成比例列出方程即可解答;
(2)⊙P與正方形ABCD的邊相切時有兩種情況,分別是與CD邊和AD邊相切,分別畫出圖形,用勾股定理即可解答;
(3)因為B點始終在圓內(nèi),所以正方形ABCD中恰好有兩個頂點在圓內(nèi),是C在圓內(nèi),D點在圓上或園外,求出它們的極值即可解答
(1)∵∠B=∠C=90°,ΔMBPΔDCP;
∴
設(shè)BP=x,則CP=4-x,
∵AB=CD=8,BP==4
∴
,
(2)解:如圖1,當(dāng)與邊相切時,
設(shè),
在中,∵,
∴,
∴,
∴,.
如圖2,當(dāng)與邊相切時,
設(shè)切點為,連接,
則,四邊形是矩形.
∴,
∴,,
在中,.
綜上所述,的長為3或.
(3).
如圖1,當(dāng)時,經(jīng)過點,點;
如圖3,當(dāng)經(jīng)過點,點時
∵,
∴,
∴,
∴.
∴⊙P的半徑為x,當(dāng),正方形ABCD中恰好有兩個頂點在圓內(nèi)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:四邊形為的內(nèi)接四邊形,連接,為的直徑,于點.
(1)如圖,求證:;
(2)如圖,連接,當(dāng)時,求證:;
(3)如圖,在(2)的條件下,延長交于點,連接, ,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是多少;
(2)若甲、乙均可在本層移動,用畫樹狀圖法或列表法求出黑色方塊所構(gòu)成拼圖是軸對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把邊長為cm的等邊剪成四部分,從三角形三個頂點往下bcm處,呈30°角下剪刀,使中間部分形成一個小的等邊.若的面積是的,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一動點從半徑為2的上的點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;接著又從點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;間的距離是________;…按此規(guī)律運動到點處,則點與點間的距離是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,甲、乙兩名大學(xué)生騎自行車去距學(xué)校6000米的凈月潭公園.兩人同時從學(xué)校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時,甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.
(1)求a、b的值.
(2)求甲追上乙時,距學(xué)校的路程.
(3)當(dāng)兩人相距500米時,直接寫出t的值是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(-2,3)關(guān)于y軸的對稱點為點B,連接AB,反比例函數(shù)y=(x>0)的圖象經(jīng)過點B,過點B作BC⊥x軸于點C,點P是該反比例函數(shù)圖象上任意一點.
(1)求k的值;
(2)若△ABP的面積等于2,求點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的邊,點,分別在軸,軸上,反比例函數(shù)的圖象經(jīng)過點,且與邊交于點.
(1)求反比例函數(shù)的解析式;
(2)求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點,與軸交于點,點為該拋物線的頂點.
(1)如圖甲,點為拋物線上,兩點間的一動點,連接,,當(dāng)面積最大時,在對稱軸上有一動點,如圖乙所示,過點作軸交軸于點,連接,,求的最小值,并求出此時點的坐標(biāo);
(2)如圖丙所示,將繞著點旋轉(zhuǎn),得到,在旋轉(zhuǎn)過程中,是否存在某個時刻使以點為頂點的三角形為以為腰的等腰三角形,如果存在,請直接寫出此時點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com