【題目】在平面直角坐標(biāo)系中,拋物線過A(-1,0)、B(3,0)、C(0,-1)三點.
(1)求該拋物線的表達(dá)式;
(2)若該拋物線的頂點為D,求直線AD的解析式;
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件的點標(biāo).P的坐標(biāo).
【答案】(1) ;(2) x-;(3)P(-4,7)、(4, )、(2,-1).
【解析】試題分析:(1)已知拋物線圖象上不同的三點坐標(biāo),利用待定系數(shù)法能求出拋物線的解析式.
(2)將(1)的拋物線解析式化為頂點式,即可得到頂點D的坐標(biāo),點A的坐標(biāo)已知,利用待定系數(shù)法即可求出直線AD的解析式.
(3)題目給出的四邊形四頂點排序沒有明確,因此要分兩種情況討論:
①線段AB為平行四邊形的邊;那么點Q向左或向右平移AB長個單位就能得到點P的坐標(biāo),點Q的橫坐標(biāo)是確定的,那么點P的坐標(biāo)就能確定出來,而點P恰好在拋物線的圖象上,代入拋物線的解析式即可求出點P的坐標(biāo);
②線段AB為對角線;那么點Q、P關(guān)于AB的中點對稱(平行四邊形是中心對稱圖形),思路同①,首先確定點P的橫坐標(biāo),再代入拋物線的解析式中確定其具體的坐標(biāo)值.
試題解析:(1)設(shè)表達(dá)式為y=ax2+bx-1過點(-1,0)與(3,0)
∴
∴
∴所求解析式為:
(2)∵D是的頂點
∴D(1,-)
設(shè)AD的解析式為y=kx+b過點A、D,
,
解得
直線AD的解析式為-x-
(3)設(shè)點Q的坐標(biāo)為(0,y),分兩種情況討論:
①線段AB為平行四邊形的邊,則QP∥x軸,且QP=AB=4,有:
1、將點Q向左平移4個單位,則P1(-4,y),代入拋物線的解析式,得:
y=(-4+1)(-4-3)=7,
即:P1(-4,7);
2、將點Q向右平移4個單位,則P2(4,y),代入拋物線的解析式,得:
y=(4+1)(4-3)=,
即:P2(4, );
②線段AB為平行四邊形的對角線,則Q、P關(guān)于AB的中點對稱,即P3(2,-y),代入拋物線的解析式,得:
-y=(2+1)(2-3)=-1,
即:P3(2,-1);
綜上,滿足條件的點P的坐標(biāo)為(-4,7)、(4, )、(2,-1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時距地最遠(yuǎn);
(2)求收工時距地多遠(yuǎn)?
(3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P的橫坐標(biāo)為x,縱坐標(biāo)為2x,滿足這樣條件的點稱為“關(guān)系點”.
(1)在點A(1,2)、B(2,1)、M(,1)、N(1, )中,是“關(guān)系點”的為 ;
(2)⊙O的半徑為1,若在⊙O上存在“關(guān)系點”P,求點P坐標(biāo);
(3)點C的坐標(biāo)為(3,0),若在⊙C上有且只有一個“關(guān)系點”P,且“關(guān)系點”P的橫坐標(biāo)滿足-2≤x≤2.請直接寫出⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
課外興趣小組活動時,老師提出了如下問題:
(1)如圖①,中,,若,點是斜邊上一動點,求線段的最小值.
在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:
根據(jù)直線外一點和直線上各點連接的所有線段中,垂線段最短,得到:
當(dāng)時,線段取得最小值.請你根據(jù)小明的思路求出這個最小值.
(思維運用)
(2)如圖,在中,,,為斜邊上一動點,過作于點,過作于點,求線段的最小值.
(問題拓展)
(3)如圖,,線段上的一個動點,分別以為邊在的同側(cè)作菱形和菱形,點在一條直線上.,分別是對角線的中點,當(dāng)點在線段上移動時,點之間的距離的最小值為_____.(直接寫出結(jié)果,不需要寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式的規(guī)律,解答下列問題:
(1)按此規(guī)律,第④個等式為_________;第個等式為_______;(用含的代數(shù)式表示,為正整數(shù))
(2)按此規(guī)律,計算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).
(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在長方形中,。點從出發(fā),沿路線運動,到停止;點出發(fā)時的速度為每秒,7秒時點的速度變?yōu)槊棵?/span>,圖②是點出發(fā)秒后,的面積與(秒)的關(guān)系圖象;
(1)根據(jù)題目提供的信息,求出的值為______________、的值為_________的值為___________;
(2)設(shè)點離開點的路程為,
①7.5秒時,的值為_____________________;
②請求出當(dāng)動點改變速度后,與的關(guān)系式;
(3)點出發(fā)后幾秒,的面積是長方形面積的?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線與直線在第二象限的交點,AB⊥軸于點B且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A,C的坐標(biāo);
(3)求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com