某商品的進(jìn)價(jià)為每件40元,售價(jià)每件不低于50元且不高于80元.售價(jià)為每件60元時(shí),每個月可賣出100件;如果每件商品的售價(jià)每上漲1元,則每個月少賣2件.如果每件商品的售價(jià)每降價(jià)1元,則每個月多賣1件.設(shè)每件商品的售價(jià)為x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個月可獲得最大利潤?最大的月利潤是多少元?
(3)當(dāng)每件商品的售價(jià)高于60元時(shí),定價(jià)為多少元使得每個月的利潤恰為2250元?
【答案】分析:(1)由于售價(jià)為60時(shí),每個月賣100件,售價(jià)上漲或下調(diào)影響銷量,因此分為50≤x≤60和60<x≤80兩部分求解;
(2)由(1)中求得的函數(shù)解析式來根據(jù)自變量x的范圍求利潤的最大值;
(3)在60<x≤80,令y=2250,求得定價(jià)x的值.
解答:解:(1)當(dāng)50≤x≤60時(shí),y=(x-40)(100+60-x)=-x2+200x-6400;
當(dāng)60<x≤80時(shí),y=(x-40)(100-2x+120)=-2x2+300x-8800;
∴y=-x2+200x-6400(50≤x≤60且x為整數(shù))
y=-2x2+300x-8800(60<x≤80且x為整數(shù))
(2)當(dāng)50≤x≤60時(shí),y=-(x-100)2+3600;
∵a=-1<0,且x的取值在對稱軸的左側(cè),
∴y隨x的增大而增大,
∴當(dāng)x=60時(shí),y有最大值2000;
當(dāng)60<x≤80時(shí),y=-2(x-75)2+2450;
∵a=-2<0,
∴當(dāng)x=75時(shí),y有最大值2450.
綜上所述,每件商品的售價(jià)定為75元時(shí),每個月可獲得最大利潤,最大的月利潤是2450元.
(3)當(dāng)60<x≤80時(shí),y=-2(x-75)2+2450.
當(dāng)y=2250元時(shí),-2(x-75)2+2450=2250,
解得:x1=65,x2=85;
其中,x2=85不符合題意,舍去.
∴當(dāng)每件商品的售價(jià)為65元時(shí),每個月的利潤恰為2250元.
點(diǎn)評:本題考查的是函數(shù)方程和實(shí)際結(jié)合的問題,同學(xué)們需掌握最值的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元時(shí),每個月可賣出100件;如果每件商品的售價(jià)每上漲1元,則每個月少賣2件.設(shè)每件商品的售價(jià)為x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個月可獲得最大利潤?最大的月利潤是多少元?
(3)當(dāng)售價(jià)的范圍是多少時(shí),使得每件商品的利潤率不超過80%且每個月的利潤不低于2250元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元時(shí),每個月可賣出800件;如果每件商品的售價(jià)每上漲1元,則每個月少賣20件.設(shè)每件商品售價(jià)為x元,每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個月可獲得最大銷售利潤?最大的月銷售利潤是多少元?
(3)物價(jià)部門規(guī)定每件商品的利潤率不高于100%,商家為了使每個月的銷售利潤不低于10000元,如何定價(jià),商品的月銷售量最大?最大銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如果調(diào)整價(jià)格,每漲價(jià)一元,每星期要少賣出10件.設(shè)該商品定價(jià)為每件x元.
(1)該商店每星期的銷售量是
900-10x
900-10x
件(用含x的代數(shù)式表示);
(2)設(shè)商場每星期獲得的利潤為y元,求y與x的函數(shù)關(guān)系式;
(3)該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•巴中)某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個月可賣出200件,如果每件商品的售價(jià)上漲1元,則每個月少買10件(每件售價(jià)不能高于72元),設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個月可獲得最大利潤?最大月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格進(jìn)行漲價(jià)銷售,每漲價(jià)一元,每星期要少賣出10件.該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案