【題目】如圖在ABC中,BO,CO分別平分∠ABC,ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=1,BEC=2,則以下結論①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正確的是( 。

A. ①②③ B. ①③④ C. ①④ D. ①②④

【答案】C

【解析】

根據(jù)三角形內角和定理以及三角形角平分線的定義可得∠BOC=90°+1,再結合三角形外角性質可得∠ECD=OBC+2,從而可得∠BOC=90°+2,據(jù)此即可進行判斷.

BO,CO分別平分∠ABC,ACB,

∴∠OBC=ABC,OCB=ACB,

∵∠ABC+ACB+1=180°,

∴∠ABC+ACB=180°-1,

∴∠OBC+OCB=ABC+ACB)=(180°-1)=90°-1,

∴∠BOC=180°-OBC-OCB=180°-(90°-1)=90°+1,

∵∠ACD=ABC+1,CE平分∠ACD,

∴∠ECD=ACD=ABC+1),

∵∠ECD=OBC+2,

∴∠2=1,即∠1=22,

∴∠BOC=90°+1=90°+2,

∴①④正確,②③錯誤,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將長方形紙片ABCD如圖折疊,B、C 兩點恰好重合落在AD 邊上的同一點P 處,折痕分別是MHNG,已知∠MPN=90°,且PM=3MN=5.則△PGN面積為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.

(1)求A、B型號衣服進價各是多少元?

(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列幾個命題中正確的個數(shù)為    個.

擲一枚均勻骰子,朝上點數(shù)為負為必然事件(骰子上各面點數(shù)依次為1,23,45,6).

5名同學的語文成績?yōu)?/span>9092,92,98,103,則他們平均分為95,眾數(shù)為92

射擊運動員甲、乙分別射擊10次,算得甲擊中環(huán)數(shù)的方差為4,乙擊中環(huán)數(shù)的方差為16,則這一過程中乙較甲更穩(wěn)定.

某部門15名員工個人年創(chuàng)利潤統(tǒng)計表如下,其中有一欄被污漬弄臟看不清楚數(shù)據(jù),所以對于該部門員工個人年創(chuàng)利潤的中位數(shù)為5萬元的說法無法判斷對錯.

個人年創(chuàng)利潤/萬元

10

8

5

3

員工人數(shù)

1

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說:這樓起碼20層!小華卻不以為然:“20層?我看沒有,數(shù)數(shù)就知道了!小明說:有本事,你不用數(shù)也能明白!小華想了想說:沒問題!讓我們來量一量吧!小明、小華在樓體兩側各選A、B兩點,測量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150,CD=10,A=30°,B=45°,(A、C、D、B四點在同一直線上)問:

1)樓高多少米?

2)若每層樓按3計算,你支持小明還是小華的觀點呢?請說明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的沿湖道路上有A、B兩個游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.

(1)求觀光島嶼C與碼頭A之間的距離(即AC的長);

(2)游客小明準備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開往碼頭A、B的游船速度相同,設開往碼頭A、B所用的時間分別是t1、t2,求的值.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OD=OC,添加下列四個條件中的一個,仍不能得到ODAOCB全等的是(

A.D=CB.OA=OBC.BD=ACD.AD=BC

查看答案和解析>>

同步練習冊答案