【題目】如圖,把平面內(nèi)一條數(shù)軸x繞原點O逆時針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個平面斜坐標(biāo)系.規(guī)定:過點Py軸的平行線,交x軸于點A,過點Px軸的平行線,交y軸于點B,若點Ax軸上對應(yīng)的實數(shù)為a,點By軸上對應(yīng)的實數(shù)為b,則稱有序?qū)崝?shù)對(a,b)為點P的斜坐標(biāo),在某平面斜坐標(biāo)系中,已知θ=60°,點M′的斜坐標(biāo)為(3,2),點N與點M關(guān)于y軸對稱,則點N的斜坐標(biāo)為_____

【答案】(﹣2,5)

【解析】如圖作NDx軸交y軸于D,作NCy軸交x軸于C.MNy軸于K.利用全等三角形的性質(zhì),平行四邊形的性質(zhì)求出OC、OD即可;

如圖作NDx軸交y軸于D,作NCy軸交x軸于C.MNy軸于K.

NK=MK,DNK=BMK,NKD=MKB,

∴△NDK≌△MBK,

DN=BM=OC=2,DK=BK,

RtKBM中,BM=2,MBK=60°,

∴∠BMK=30°,

DK=BK=BM=1,

OD=5,

N(-2,5),

故答案為(-2,5)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】的弦的半徑之比為,則弦所對的圓周角等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件解直角三角形:

(1)RtABC中,∠C=90°,c=8,A=60°;

(2)RtABC中,∠C=90°,a=3,b=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值如下表:

x

﹣1

0

1

2

3

y

﹣1

﹣2

根據(jù)表格中的信息,完成下列各題

(1)當(dāng)x=3時,y=   

(2)當(dāng)x為何值時,y=0?

(3)①若自變量x的取值范圍是0≤x≤5,求函數(shù)值y的取值范圍;

若函數(shù)值y為正數(shù),則自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是(  )

A. 33° B. 45° C. 57° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=3,AB=7,

(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)DE的長度;

(3)BEDF的位置關(guān)系如何?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.

(1)請補畫出它的俯視圖,并標(biāo)出相關(guān)數(shù)據(jù);

(2)根據(jù)圖中所標(biāo)的尺寸(單位:厘米),計算這個幾何體的全面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=kx+b(k0)的圖象與反比例函數(shù)的圖象交于A、B兩點,與坐標(biāo)軸交于M、N兩點.且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2.

(1)求一次函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫出y1y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】淇淇和嘉嘉在學(xué)習(xí)了利用相似三角形測高之后分別測量兩個旗桿高度.

(1)如圖1所示,淇淇將鏡子放在地面上,然后后退直到她站直身子剛好能從鏡子里看到旗桿的頂端E,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,已知淇淇同學(xué)的身高是1.54m,眼睛位置A距離淇淇頭頂?shù)木嚯x是4cm,求旗桿DE 的高度.

如圖2所示,嘉嘉在某一時刻測得 1 米長的竹竿豎直放置時影長2米,在同時刻測量旗桿的影長時,旗桿的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他測得落在地面上的影長為10米,落在斜坡上的影長為米,∠DCE=45°,求旗桿AB的高度?

查看答案和解析>>

同步練習(xí)冊答案