【題目】已知,點(diǎn)在射線上,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合).點(diǎn)關(guān)于的對(duì)稱點(diǎn)為點(diǎn),連接,點(diǎn)在直線上,且滿足.小明在探究圖形運(yùn)動(dòng)的過程中發(fā)現(xiàn):始終成立.

1)如圖1,當(dāng)時(shí);

①求證:

②用等式表示線段、之間的數(shù)量關(guān)系,并證明;

2)當(dāng)時(shí),直接用等式表示線段之間的數(shù)量關(guān)系是______

【答案】1)①見解析;②;證明見解析;(2

【解析】

1)①根據(jù)軸對(duì)稱的性質(zhì)得到ABC≌△ADC,求得∠ABC=ADC,∠ACB=ACD=45°,根據(jù)等腰三角形的性質(zhì)和四邊形的內(nèi)角和即可得到結(jié)論;

②過AAPACCB的延長線于P,求得APC是等腰直角三角形,∠PAC=90°,AP=AC,得到∠PAF=DAC,根據(jù)全等三角形的性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;

2)如圖2,過AAPACCB的延長線于P,求得APC是等腰直角三角形,∠PAC=90°,AP=AC,得到∠PAF=DAC,根據(jù)全等三角形的性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論.

1)①∵點(diǎn)關(guān)于的對(duì)稱點(diǎn)為點(diǎn)

,

在四邊形中,

解:過點(diǎn)邊的垂線交延長線于點(diǎn)

是等腰直角三角形,

在等腰中,

2

當(dāng)90°<∠BAC135°時(shí),如圖2,

AAPACCB的延長線于P,

∴△APC是等腰直角三角形,∠PAC=90°,AP=AC,

∵∠PAF-FAC=DAC-FAC=90°,

∴∠PAF=DAC,

∵∠AFB=ADC,

∴△APF≌△ACDASA),

PF=CD,

∵在等腰直角三角形APC中,PF-CF=PC=AC,

CD-CF=AC

故答案為:CD-CF=AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4cmBC=5cm,P上的動(dòng)點(diǎn).設(shè)A,P兩點(diǎn)間的距離為xcm

B,P兩點(diǎn)間的距離為cm,CP兩點(diǎn)間的距離為cm

小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:

(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了,的幾組對(duì)應(yīng)值:

x/cm

0

1

2

3

4

/cm

4.00

3.69

2.13

0

/cm

3.00

3.91

4.71

5.23

5

(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,)(x,),并畫出函數(shù),的圖象:

(3)結(jié)合函數(shù)圖象.

當(dāng)△PBC為等腰三角形時(shí),AP的長度約為____cm

所在圓的圓心為點(diǎn)O,當(dāng)直線PC恰好經(jīng)過點(diǎn)O時(shí),PC的長度約為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,BECD于點(diǎn)E,DFBC于點(diǎn)F

1)求證:BFDE;

2)分別延長BEAD,交于點(diǎn)G,若∠A45°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn)A,與拋物線的對(duì)稱軸交于點(diǎn)B,將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)C,連接ABAC得到的折線段記為圖形G

1)求出拋物線的對(duì)稱軸和點(diǎn)C坐標(biāo);

2)①當(dāng)時(shí),直接寫出拋物線與圖形G的公共點(diǎn)個(gè)數(shù).

②如果拋物線與圖形G有且只有一個(gè)公共點(diǎn),求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小菲設(shè)計(jì)的“作一個(gè)角等于已知角的二倍”的尺規(guī)作圖過程.

已知:中,

求作:,使得

作法:如圖,

①分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧交于點(diǎn),作直線

②分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧交于、點(diǎn),作直線,交于點(diǎn)

③連接;

④以點(diǎn)為圓心,的長為半徑作

所以

根據(jù)小菲設(shè)計(jì)的尺規(guī)作圖過程.

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:連接

分別為、的垂直平分線,

________

的外接圓.

∵點(diǎn)上的一點(diǎn),

.(____________).(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為平面內(nèi)不在同一直線上的三點(diǎn),點(diǎn)為平面內(nèi)一個(gè)動(dòng)點(diǎn),線段的中點(diǎn)分別為.在點(diǎn)的運(yùn)動(dòng)過程中,有下列結(jié)論:①存在無數(shù)個(gè)中點(diǎn)四邊形是平行四邊形;②存在無數(shù)個(gè)中點(diǎn)四邊形是菱形;③存在無數(shù)個(gè)中點(diǎn)四邊形是矩形;④存在兩個(gè)中點(diǎn)四邊形是正方形.所有正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點(diǎn)

(1)求該拋物線的頂點(diǎn)坐標(biāo);(用含的代數(shù)式表示)

(2)若該拋物線經(jīng)過點(diǎn),求此拋物線的表達(dá)式;

(3)若該拋物線與線段有公共點(diǎn),結(jié)合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB,CD在⊙O上,弦AD的延長線與弦BC的延長線相交于點(diǎn)E.用①AB是⊙O的直徑,②CBCE,③ABAE中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線x=3與直線y=x+1交于點(diǎn)A,函數(shù)y=k0x0)的圖象與直線x=3,直線y=x+1分別交于點(diǎn)BC

1)求點(diǎn)A的坐標(biāo).

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記函數(shù)y=k0x0)的圖象在點(diǎn)BC之間的部分與線段AB,AC圍成的區(qū)域(不含邊界)為W

當(dāng)k=1時(shí),結(jié)合函數(shù)圖象,求區(qū)域W內(nèi)整點(diǎn)的個(gè)數(shù);

若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),直接寫出k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案