【題目】已知:如圖,在長(zhǎng)方形ABCD中,AB=4,AD=6.延長(zhǎng)BC到點(diǎn)E,使CE=3,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為__________秒時(shí).△ABP和△DCE全等.
【答案】3或13
【解析】
由條件可知BP=t,當(dāng)點(diǎn)P在線段BC上時(shí)可知BP=CE,當(dāng)點(diǎn)P在線段DA上時(shí),則有AD=CE,分別可得到關(guān)于t的方程,可求得t的值.
解:因?yàn)?/span>AB=CD,若∠ABP=∠DCE=90°,BP=CE=3,根據(jù)SAS證得△ABP≌△DCE,
由題意得:BP=t=3,
所以t=3,
因?yàn)?/span>AB=CD,若∠BAP=∠DCE=90°,AP=CE=3,根據(jù)SAS證得△BAP≌△DCE,
由題意得:AP=16-t=3,
解得t=13.
所以,當(dāng)t的值為3或13秒時(shí).△ABP和△DCE全等.
故答案為: 3或13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將△ABC沿DE、HG、EF分別翻折,三個(gè)頂點(diǎn)均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠DOH=78°,則∠FOG的度數(shù)為( ).
A. 78° B. 102° C. 112° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長(zhǎng)為半徑畫弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則∠BDC為( 。┒龋
A. 65 B. 75 C. 80 D. 85
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長(zhǎng)線于E,D.過(guò)P作PF⊥AD交AC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.
(1)求圓的半徑和點(diǎn)D的坐標(biāo);
(2)點(diǎn)A的坐標(biāo)是 , 點(diǎn)B的坐標(biāo)是 , sin∠ACB;
(3)求經(jīng)過(guò)C、A、B三點(diǎn)的拋物線解析式;
(4)設(shè)拋物線的頂點(diǎn)為F,證明直線FA與⊙D相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)M(﹣3,2)分別作x軸、y軸的垂線與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,,邊上的高,則邊的長(zhǎng)為( )
A. 4 B. 14 C. 4 或14 D. 8或14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),康康依據(jù)圖象寫出了四個(gè)結(jié)論:
①如果點(diǎn)(﹣ ,y1)和(2,y2)都在拋物線上,那么y1<y2;
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的實(shí)數(shù));
④ =﹣3.
康康所寫的四個(gè)結(jié)論中,正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com