分析 (1)根據(jù)含30°的直角三角形的性質(zhì)和等邊三角形的性質(zhì)解答即可;
(2)根據(jù)相似三角形的判定和性質(zhì)以及直角三角形中的三角函數(shù)解答即可;
(3)由(2)的推理得出 $\frac{PM}{QN}$,再利用直角三角形的三角函數(shù)解答.
解答 解:(1)①∵∠ACB=90°,D為AB的中點(diǎn),
∴CD=DB,
∴∠DCB=∠B,
∵∠B=60°,
∴∠DCB=∠B=∠CDB=60°,
∴∠CDA=120°,
∵∠EDC=90°,
∴∠ADE=30°;
②∵∠C=90°,∠MDN=90°,
∴∠DMC+∠CND=180°,
∵∠DMC+∠PMD=180°,
∴∠CND=∠PMD,
同理∠CPD=∠DQN,
∴△PMD∽△QND,
過點(diǎn)D分別做DG⊥AC于G,DH⊥BC于H,
可知DG,DH分別為△PMD和△QND的高
∴$\frac{PM}{QN}$=$\frac{DG}{DH}$,
∵DG⊥AC于G,DH⊥BC于H,
∴DG∥BC,
又∵D為AC中點(diǎn),
∴G為AC中點(diǎn),
∵∠C=90°,
∴四邊形CGDH 為矩形有CG=DH=AG,
Rt△AGD中,$\frac{DG}{AG}$=$\frac{1}{\sqrt{3}}$,
即 $\frac{PM}{QN}$=$\frac{\sqrt{3}}{3}$
(2)是定值,定值為tan(90°-β),
∵$\frac{PM}{QN}$=$\frac{DG}{DH}$,四邊形CGDH 為矩形有CG=DH=AG,
∴Rt△AGD中,$\frac{DG}{AG}$=tan∠A=tan(90°-∠B)=tan(90°-β),
∴$\frac{PM}{QN}$=tan(90°-β).
點(diǎn)評 此題是幾何變換綜合題,組要考查了矩形的性質(zhì),銳角三角函數(shù)的定義相似三角形的性質(zhì)和判定,關(guān)鍵是根據(jù)直角三角形的性質(zhì)和相似三角形的判定進(jìn)行解答
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知①②則③ | B. | 已知②⑤則④ | C. | 已知②④則③ | D. | 已知④⑤則② |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com